Boundary Topological Entanglement Entropy in Two and Three Dimensions

被引:2
|
作者
Bridgeman, Jacob C. [1 ]
Brown, Benjamin J. [2 ]
Elman, Samuel J. [2 ,3 ,4 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
[2] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW 2006, Australia
[3] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[4] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
MODULAR CATEGORIES; FUSION RULES; DEGENERACY; INVARIANTS; STATES;
D O I
10.1007/s00220-021-04191-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The topological entanglement entropy is used to measure long-range quantum correlations in the ground space of topological phases. Here we obtain closed form expressions for the topological entropy of (2+1)- and (3+1)-dimensional loop gas models, both in the bulk and at their boundaries, in terms of the data of their input fusion categories and algebra objects. Central to the formulation of our results are generalized S-matrices. We conjecture a general property of these S-matrices, with proofs provided in many special cases. This includes constructive proofs for categories up to rank 5.
引用
收藏
页码:1241 / 1276
页数:36
相关论文
共 50 条
  • [41] Ishibashi states, topological orders with boundaries and topological entanglement entropy. Part II. Cutting through the boundary
    Ce Shen
    Jiaqi Lou
    Ling-Yan Hung
    Journal of High Energy Physics, 2019
  • [42] Ishibashi states, topological orders with boundaries and topological entanglement entropy. Part II. Cutting through the boundary
    Shen, Ce
    Lou, Jiaqi
    Hung, Ling-Yan
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
  • [43] Area term of the entanglement entropy of a supersymmetric O(N) vector model in three dimensions
    Hung, Ling-Yan
    Jiang, Yikun
    Wang, Yixu
    PHYSICAL REVIEW D, 2017, 95 (08)
  • [44] ENTANGLEMENT ENTROPY AND STRONGLY CORRELATED TOPOLOGICAL MATTER
    Grover, Tarun
    MODERN PHYSICS LETTERS A, 2013, 28 (05)
  • [45] A note on entanglement entropy for topological interfaces in RCFTs
    Gutperle, Michael
    Miller, John D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):
  • [46] TOPOLOGICAL ENTANGLEMENT ENTROPY IN THE SECOND LANDAU LEVEL
    Friedman, B. A.
    Levine, G. C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (24): : 4707 - 4715
  • [47] Topological entanglement entropy of fracton stabilizer codes
    Ma, Han
    Schmitz, A. T.
    Parameswaran, S. A.
    Hermele, Michael
    Nandkishore, Rahul M.
    PHYSICAL REVIEW B, 2018, 97 (12)
  • [48] Accuracy of Topological Entanglement Entropy on Finite Cylinders
    Jiang, Hong-Chen
    Singh, Rajiv R. P.
    Balents, Leon
    PHYSICAL REVIEW LETTERS, 2013, 111 (10)
  • [49] Entanglement Entropy in the Ising Model with Topological Defects
    Roy, Ananda
    Saleur, Hubert
    PHYSICAL REVIEW LETTERS, 2022, 128 (09)
  • [50] Renormalization of entanglement entropy from topological terms
    Anastasiou, Giorgos
    Araya, Ignacio J.
    Olea, Rodrigo
    PHYSICAL REVIEW D, 2018, 97 (10)