Boundary Topological Entanglement Entropy in Two and Three Dimensions

被引:2
|
作者
Bridgeman, Jacob C. [1 ]
Brown, Benjamin J. [2 ]
Elman, Samuel J. [2 ,3 ,4 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
[2] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW 2006, Australia
[3] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[4] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
MODULAR CATEGORIES; FUSION RULES; DEGENERACY; INVARIANTS; STATES;
D O I
10.1007/s00220-021-04191-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The topological entanglement entropy is used to measure long-range quantum correlations in the ground space of topological phases. Here we obtain closed form expressions for the topological entropy of (2+1)- and (3+1)-dimensional loop gas models, both in the bulk and at their boundaries, in terms of the data of their input fusion categories and algebra objects. Central to the formulation of our results are generalized S-matrices. We conjecture a general property of these S-matrices, with proofs provided in many special cases. This includes constructive proofs for categories up to rank 5.
引用
收藏
页码:1241 / 1276
页数:36
相关论文
共 50 条
  • [21] Analytic expression for the entanglement entropy of a two-dimensional topological superconductor
    Borchmann, Jan
    Pereg-Barnea, T.
    PHYSICAL REVIEW B, 2017, 95 (07)
  • [22] Entanglement entropy and entanglement spectrum of triplet topological superconductors
    Oliveira, T. P.
    Ribeiro, P.
    Sacramento, P. D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (42)
  • [23] Entanglement entropy scaling of noisy random quantum circuits in two dimensions
    Zhang, Meng
    Wang, Chao
    Dong, Shaojun
    Zhang, Hao
    Han, Yongjian
    He, Lixin
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [24] Entanglement entropy for integer quantum Hall effect in two and higher dimensions
    Karabali, Dimitra
    PHYSICAL REVIEW D, 2020, 102 (02):
  • [25] Topological Spinon Semimetals and Gapless Boundary States in Three Dimensions
    Schaffer, Robert
    Lee, Eric Kin-Ho
    Lu, Yuan-Ming
    Kim, Yong Baek
    PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [26] Entanglement entropy from entanglement contour: Higher dimensions
    Han, Muxin
    Wen, Qiang
    SCIPOST PHYSICS CORE, 2022, 5 (02):
  • [27] Hagedorn transition and topological entanglement entropy
    Zuo, Fen
    Gao, Yi-Hong
    NUCLEAR PHYSICS B, 2016, 907 : 764 - 784
  • [28] Identifying topological order by entanglement entropy
    Jiang, Hong-Chen
    Wang, Zhenghan
    Balents, Leon
    NATURE PHYSICS, 2012, 8 (12) : 902 - 905
  • [29] Entanglement entropy of topological orders with boundaries
    Chen, Chaoyi
    Hung, Ling-Yan
    Li, Yingcheng
    Wan, Yidun
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06):
  • [30] Boundary effects in entanglement entropy
    Berthiere, Clement
    Solodukhin, Sergey N.
    NUCLEAR PHYSICS B, 2016, 910 : 823 - 841