How many Pythagorean triples with a given inradius?

被引:5
|
作者
Omland, Tron [1 ]
机构
[1] Univ Oslo, Dept Math, POB 1053 Blindern, NO-0316 Oslo, Norway
关键词
Pythagorean triples; Inradius;
D O I
10.1016/j.jnt.2016.06.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a very short proof to answer the question of the title. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 2
页数:2
相关论文
共 50 条
  • [31] AN OMEGA THEOREM ON PYTHAGOREAN TRIPLES
    KUHLEITNER, M
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1993, 63 : 105 - 113
  • [32] PYTHAGOREAN TRIPLES AND TRIANGULAR NUMBERS
    BALLEW, DW
    WEGER, RC
    FIBONACCI QUARTERLY, 1979, 17 (02): : 168 - 172
  • [33] On Pythagorean triples and their harmonic fourths
    Rieger, GJ
    JOURNAL OF NUMBER THEORY, 2001, 91 (01) : 164 - 173
  • [34] Pythagorean Triples with Common Sides
    Ochieng, Raymond Calvin
    Chikunji, Chiteng'a John
    Onyango-Otieno, Vitalis
    JOURNAL OF MATHEMATICS, 2019, 2019
  • [35] APPEARANCE OF INTEGERS IN PYTHAGOREAN TRIPLES
    WESTPHAL, WR
    MARSTON, HM
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (03): : 303 - 304
  • [36] PYTHAGOREAN AND TRIANGULAR NUMBER TRIPLES
    WULCZYN, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 100 - &
  • [37] Another representation of Pythagorean triples
    Maynard, Philip
    MATHEMATICAL GAZETTE, 2005, 89 (516): : 456 - 458
  • [38] JESMANOWICZ' CONJECTURE ON PYTHAGOREAN TRIPLES
    Ma, Mi-Mi
    Chen, Yong-Gao
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (01) : 30 - 35
  • [39] CONTINUED FRACTIONS AND PYTHAGOREAN TRIPLES
    WATERHOUSE, WC
    FIBONACCI QUARTERLY, 1992, 30 (02): : 144 - 147
  • [40] MULTIPLE PYTHAGOREAN NUMBER TRIPLES
    FASSLER, A
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (06): : 505 - 517