How many Pythagorean triples with a given inradius?

被引:5
|
作者
Omland, Tron [1 ]
机构
[1] Univ Oslo, Dept Math, POB 1053 Blindern, NO-0316 Oslo, Norway
关键词
Pythagorean triples; Inradius;
D O I
10.1016/j.jnt.2016.06.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a very short proof to answer the question of the title. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 2
页数:2
相关论文
共 50 条
  • [21] GENERATING PYTHAGOREAN TRIPLES
    TEIGEN, MG
    HADWIN, DW
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (04): : 378 - &
  • [22] On Matrix Pythagorean Triples
    Arnold, Maxim
    Eydelzon, Anatoly
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (02): : 158 - 160
  • [23] GENERALIZED PYTHAGOREAN TRIPLES
    HILDEBRAND, WJ
    COLLEGE MATHEMATICS JOURNAL, 1985, 16 (01): : 48 - 52
  • [24] Semiperimeter and Pythagorean Triples
    Gordon, Russell A.
    AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (08): : 680 - 692
  • [25] Mean crowds and Pythagorean triples
    Siler, JR
    FIBONACCI QUARTERLY, 1998, 36 (04): : 323 - 326
  • [26] ALMOST-PYTHAGOREAN TRIPLES
    WEXLER, C
    GOLDBERG, M
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (06): : 738 - &
  • [27] A METHOD OF OBTAINING PYTHAGOREAN TRIPLES
    NISHI, A
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (09): : 869 - 871
  • [28] ON THE ALGEBRAIC STRUCTURE OF PYTHAGOREAN TRIPLES
    Anatriello, Giuseppina
    Vincenzi, Giovanni
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2024, 102 (01):
  • [29] Frobenius numbers of Pythagorean triples
    Gil, Byung Keon
    Han, Ji-Woo
    Kim, Tae Hyun
    Koo, Ryun Han
    Lee, Bon Woo
    Lee, Jaehoon
    Nam, Kyeong Sik
    Park, Hyeon Woo
    Park, Poo-Sung
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (02) : 613 - 619
  • [30] Metallic means and Pythagorean triples
    Rajput, Chetansing
    Manjunath, Hariprasad
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (01) : 184 - 194