How many Pythagorean triples with a given inradius?

被引:5
|
作者
Omland, Tron [1 ]
机构
[1] Univ Oslo, Dept Math, POB 1053 Blindern, NO-0316 Oslo, Norway
关键词
Pythagorean triples; Inradius;
D O I
10.1016/j.jnt.2016.06.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a very short proof to answer the question of the title. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 2
页数:2
相关论文
共 50 条
  • [1] A group of Pythagorean triples using the inradius
    Sporn, Howard
    MATHEMATICAL GAZETTE, 2021, 105 (563): : 209 - 215
  • [2] On the number of primitive Pythagorean triangles with a given inradius
    Robbins, Neville
    FIBONACCI QUARTERLY, 2006, 44 (04): : 368 - 369
  • [3] GENERATING PYTHAGOREAN TRIPLES OF A GIVEN HEIGHT
    Austin, Jathan
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2019, 31 (02) : 136 - 145
  • [4] The number of primitive Pythagorean triples in a given interval
    Leyendekkers, J. V.
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2012, 18 (01) : 49 - 57
  • [5] PYTHAGOREAN TRIPLES
    BRUCKMAN, PS
    FIBONACCI QUARTERLY, 1990, 28 (04): : 372 - 373
  • [6] PYTHAGOREAN TRIPLES
    HORADAM, AF
    FIBONACCI QUARTERLY, 1982, 20 (02): : 121 - 122
  • [7] PYTHAGOREAN TRIPLES
    PRIELIPP, B
    FIBONACCI QUARTERLY, 1982, 20 (04): : 367 - 367
  • [8] The dynamics of Pythagorean Triples
    Romik, Dan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (11) : 6045 - 6064
  • [9] Dual Pythagorean triples
    Bhanu, K.
    Deshpande, M.
    MATHEMATICAL GAZETTE, 2012, 96 (535): : 96 - +
  • [10] SPECIAL PYTHAGOREAN TRIPLES
    BERGUM, GE
    DAHLQUIST, MA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A515 - A515