Controlling chaos in a Lorenz-like system using feedback

被引:10
|
作者
Kociuba, G [1 ]
Heckenberg, NR [1 ]
机构
[1] Univ Queensland, Dept Phys, St Lucia, Qld, Australia
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 06期
关键词
D O I
10.1103/PhysRevE.68.066212
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We demonstrate that the dynamics of an autonomous chaotic laser can be controlled to a periodic or steady state under self-synchronization. In general, past the chaos threshold the dependence of the laser output on feedback applied to the pump is submerged in the Lorenz-like chaotic pulsation. However there exist specific feedback delays that stabilize the chaos to periodic behavior or even steady state. The range of control depends critically on the feedback delay time and amplitude. Our experimental results are compared with the complex Lorenz equations which show good agreement.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] LORENZ-LIKE CHAOS IN A PARTIAL-DIFFERENTIAL EQUATION FOR A HEATED FLUID LOOP
    YORKE, JA
    YORKE, ED
    MALLETPARET, J
    PHYSICA D, 1987, 24 (1-3): : 279 - 291
  • [32] On discrete Lorenz-like attractors
    Gonchenko, Sergey
    Gonchenko, Alexander
    Kazakov, Alexey
    Samylina, Evgeniya
    CHAOS, 2021, 31 (02)
  • [33] A New Approach for Controlling Chaos in Lorenz System
    Sanayei, Ali
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 333 - 338
  • [34] Hopf Bifurcation Analysis and Control of a New Lorenz-like System
    Zhang Zhonghua
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 1597 - 1601
  • [35] Dynamical Analysis and Simulation of a New Lorenz-Like Chaotic System
    Li, You
    Zhao, Ming
    Geng, Fengjie
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [36] Controlling Lorenz chaos
    Yu, XH
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1996, 27 (04) : 355 - 359
  • [37] Controlling hyperchaos in hyperchaotic Lorenz system using feedback controllers
    Zhu, Congxu
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) : 3126 - 3132
  • [38] Singular Orbits and Dynamics at Infinity of a Conjugate Lorenz-Like System
    Geng, Fengjie
    Li, Xianyi
    MATHEMATICAL MODELLING AND ANALYSIS, 2015, 20 (02) : 148 - 167
  • [39] Hopf bifurcation analysis and bifurcation control of a lorenz-like system
    Zhang, Zhonghua
    Fu, Jingchao
    Deng, Guannan
    Complex Systems and Complexity Science, 2015, 12 (01) : 96 - 103
  • [40] COMPARISON OF LORENZ-LIKE LASER BEHAVIOR WITH THE LORENZ MODEL
    HUBNER, U
    KLISCHE, W
    ABRAHAM, NB
    WEISS, CO
    COHERENCE AND QUANTUM OPTICS VI, 1989, : 517 - 520