Controlling chaos in a Lorenz-like system using feedback

被引:10
|
作者
Kociuba, G [1 ]
Heckenberg, NR [1 ]
机构
[1] Univ Queensland, Dept Phys, St Lucia, Qld, Australia
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 06期
关键词
D O I
10.1103/PhysRevE.68.066212
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We demonstrate that the dynamics of an autonomous chaotic laser can be controlled to a periodic or steady state under self-synchronization. In general, past the chaos threshold the dependence of the laser output on feedback applied to the pump is submerged in the Lorenz-like chaotic pulsation. However there exist specific feedback delays that stabilize the chaos to periodic behavior or even steady state. The range of control depends critically on the feedback delay time and amplitude. Our experimental results are compared with the complex Lorenz equations which show good agreement.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Octonionic Lorenz-like condition
    MURAT TANIŞLI
    BERNARD JANCEWICZ
    Pramana, 2012, 78 : 165 - 174
  • [22] A new chaotic system and beyond:: The generalized Lorenz-like system
    Lü, JH
    Chen, GR
    Cheng, DZ
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (05): : 1507 - 1537
  • [23] A Unified Lorenz-Like System and Its Tracking Control
    李春来
    赵益波
    CommunicationsinTheoreticalPhysics, 2015, 63 (03) : 317 - 324
  • [24] Boundary estimation and cascade control for a Lorenz-like system
    Li, Yin
    Zang, Aibin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (15) : 11976 - 11992
  • [25] Hamiltonian Lorenz-like models
    Fedele, Francesco
    Chandre, Cristel
    Horvat, Martin
    Zagar, Nedjeljka
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472
  • [26] A double-zero bifurcation in a Lorenz-like system
    Algaba, Antonio
    Dominguez-Moreno, M. Cinta
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    NONLINEAR DYNAMICS, 2024, 112 (03) : 2305 - 2330
  • [27] An analytical approach to chaos in Lorenz-like systems. A class of dynamical equations
    Festa, R
    Mazzino, A
    Vincenzi, D
    EUROPHYSICS LETTERS, 2001, 56 (01): : 47 - 53
  • [28] A double-zero bifurcation in a Lorenz-like system
    Antonio Algaba
    M. Cinta Domínguez-Moreno
    Manuel Merino
    Alejandro J. Rodríguez-Luis
    Nonlinear Dynamics, 2024, 112 : 2305 - 2330
  • [29] Bifurcation analysis of a new Lorenz-like chaotic system
    Mello, L. F.
    Messias, M.
    Braga, D. C.
    CHAOS SOLITONS & FRACTALS, 2008, 37 (04) : 1244 - 1255
  • [30] Analysis of a Lorenz-Like Chaotic System by Lyapunov Functions
    Zhang, Fuchen
    COMPLEXITY, 2019, 2019