Embedding theorem on RD-spaces

被引:0
|
作者
Han, Yanchang [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2015年
基金
中国国家自然科学基金;
关键词
spaces of homogeneous type; test function space; distributions; Calderon reproducing formula; Besov and Triebel-Lizorkin spaces; embedding; TRIEBEL-LIZORKIN SPACES; METRIC MEASURE-SPACES; HOMOGENEOUS TYPE; HARDY-SPACES; BESOV; GEOMETRY;
D O I
10.1186/s13660-015-0620-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An RD-space (X, d, mu) is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. An important class of RD-spaces is provided by Carnot-Caratheodory spaces with a doubling measure. In this article, the author establishes the embedding theorem for Besov and Triebel-Lizorkin spaces on RD-spaces.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] New properties of Besov and Triebel-Lizorkin spaces on RD-spaces
    Yang, Dachun
    Zhou, Yuan
    MANUSCRIPTA MATHEMATICA, 2011, 134 (1-2) : 59 - 90
  • [22] New properties of Besov and Triebel-Lizorkin spaces on RD-spaces
    Dachun Yang
    Yuan Zhou
    Manuscripta Mathematica, 2011, 134 : 59 - 90
  • [23] REAL INTERPOLATION FOR GRAND BESOV AND TRIEBEL-LIZORKIN SPACES ON RD-SPACES
    Jiang, Xiaojuan
    Yang, Dachun
    Yuan, Wen
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) : 509 - 529
  • [24] OLD AND NEW MORREY SPACES WITHOUT HEAT KERNEL BOUNDS ON RD-SPACES
    Li, Bo
    Li, Ba.
    Ma, B.
    Wang, A.
    Li, J.
    ANALYSIS MATHEMATICA, 2024, 50 (02) : 597 - 623
  • [25] An embedding theorem for Campanato spaces
    El Baraka, Azzeddine
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2002,
  • [26] AN EMBEDDING THEOREM FOR FUNCTION SPACES
    CLARK, C
    PACIFIC JOURNAL OF MATHEMATICS, 1966, 19 (02) : 243 - &
  • [27] EMBEDDING THEOREM FOR SEMINEARNESS SPACES
    HASTINGS, MS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A219 - A219
  • [28] The Weighted Morrey Boundedness of Multilinear Singular Integral Operators on RD-Spaces
    Zhang, Siyuan
    Lin, Haibo
    Lin, Yan
    ANALYSIS IN THEORY AND APPLICATIONS, 2021, 37 (03): : 465 - 480
  • [29] AN EMBEDDING THEOREM FOR SPACES OF CONVEX SETS
    RADSTROM, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 3 (01) : 165 - 169
  • [30] Embedding theorem on spaces of homogeneous type
    Han, YS
    Lin, CC
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2002, 8 (03) : 291 - 307