On optimal variance estimation under different spatial subsampling schemes

被引:2
|
作者
Nordman, DJ [1 ]
Lahiri, SN [1 ]
机构
[1] Univ Dortmund, Dept Stat, D-44221 Dortmund, Germany
关键词
D O I
10.1016/B978-044451378-6/50028-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a comprehensive examination of subsampling methods for spatial data on a grid. The considered subsamples may be scaled-down copies of the original sampling region or have a freely chosen shape. We derive the mean square error associated with general subsampling methods for estimating the variance of a large class of estimators. This yields an expression for the optimal subsample size for a given subsample shape. However, in contrast to the time series case, we show that the optimal subsample size and performance with each spatial subsampling method depends on the geometry of the sampling and subsampling regions in a nontrivial way. Examples for a few simple cases are presented to illustrate that both subsample size and shape may be selected to optimize spatial subsampling for variance estimation.
引用
收藏
页码:421 / 436
页数:16
相关论文
共 50 条
  • [41] OPTIMAL-DESIGN FOR THE ESTIMATION OF VARIANCE-COMPONENTS
    MUKERJEE, R
    HUDA, S
    BIOMETRIKA, 1988, 75 (01) : 75 - 80
  • [42] Estimation of variance components under major genes influence, comparing Bayesian and classical methodologies under different scenarios
    Lessa de Assis, Giselle Mariano
    Carneiro, Jose Marques, Jr.
    Euclydes, Ricardo Frederico
    Torres, Robledo de Almeida
    Lopes, Paulo Savio
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2007, 36 (05): : 1266 - 1274
  • [43] Minimum variance unbiased invariant estimation of variance components under normality
    Wulff, SS
    Birkes, D
    STATISTICS, 2005, 39 (01) : 53 - 65
  • [44] Optimal training of Mean Variance Estimation neural networks
    Sluijterman, Laurens
    Cator, Eric
    Heskes, Tom
    NEUROCOMPUTING, 2024, 597
  • [45] OPTIMAL ESTIMATION OF VARIANCE IN NONPARAMETRIC REGRESSION WITH RANDOM DESIGN
    Shen, Yandi
    Gao, Chao
    Witten, Daniela
    Han, Fang
    ANNALS OF STATISTICS, 2020, 48 (06): : 3589 - 3618
  • [46] A study of variance estimation methods for systematic spatial sampling
    Strand, Geir-Harald
    SPATIAL STATISTICS, 2017, 21 : 226 - 240
  • [47] Framework for the comparison ofa priorianda posteriorierror variance estimation and tuning schemes
    Sitwell, Michael
    Menard, Richard
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (731) : 2547 - 2575
  • [48] VARIANCE-ESTIMATION UNDER ERGODIC HYPOTHESIS
    ARFI, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (10): : 961 - 966
  • [49] VARIANCE COMPONENT ESTIMATION UNDER MISSPECIFICATION - SOLUTION
    BALTAGI, BH
    LI, Q
    ECONOMETRIC THEORY, 1992, 8 (03) : 430 - 433
  • [50] The dependence of optimal fractionation schemes on the spatial dose distribution
    Unkelbach, Jan
    Craft, David
    Salari, Ehsan
    Ramakrishnan, Jagdish
    Bortfeld, Thomas
    PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (01): : 159 - 167