On optimal variance estimation under different spatial subsampling schemes

被引:2
|
作者
Nordman, DJ [1 ]
Lahiri, SN [1 ]
机构
[1] Univ Dortmund, Dept Stat, D-44221 Dortmund, Germany
关键词
D O I
10.1016/B978-044451378-6/50028-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a comprehensive examination of subsampling methods for spatial data on a grid. The considered subsamples may be scaled-down copies of the original sampling region or have a freely chosen shape. We derive the mean square error associated with general subsampling methods for estimating the variance of a large class of estimators. This yields an expression for the optimal subsample size for a given subsample shape. However, in contrast to the time series case, we show that the optimal subsample size and performance with each spatial subsampling method depends on the geometry of the sampling and subsampling regions in a nontrivial way. Examples for a few simple cases are presented to illustrate that both subsample size and shape may be selected to optimize spatial subsampling for variance estimation.
引用
收藏
页码:421 / 436
页数:16
相关论文
共 50 条
  • [21] Variance Estimation for Systematic Designs in Spatial Surveys
    Fewster, R. M.
    BIOMETRICS, 2011, 67 (04) : 1518 - 1531
  • [22] Properties of realized variance under alternative sampling schemes
    Oomen, RCA
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2006, 24 (02) : 219 - 237
  • [23] Estimation of trait parameters in human QTL mapping under different ascertainment schemes
    Mukhopadhyay, I.
    Fiengold, E.
    Weeks, D. E.
    GENETIC EPIDEMIOLOGY, 2007, 31 (06) : 639 - 639
  • [24] On variance estimation under shifts in the mean
    Ieva Axt
    Roland Fried
    AStA Advances in Statistical Analysis, 2020, 104 : 417 - 457
  • [25] Gini estimation under infinite variance
    Fontanari, Andrea
    Taleb, Nassim Nicholas
    Cirillo, Pasquale
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 502 : 256 - 269
  • [26] On variance estimation under shifts in the mean
    Axt, Ieva
    Fried, Roland
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2020, 104 (03) : 417 - 457
  • [27] Optimal spatial sampling schemes for environmental surveys
    Di Zio S.
    Fontanella L.
    Ippoliti L.
    Environmental and Ecological Statistics, 2004, 11 (4) : 397 - 414
  • [28] VARIANCE ESTIMATORS USING NON-PARAMETRIC APPROACH UNDER DIFFERENT RANKED SET SAMPLING SCHEMES
    Begum, Naeema
    Hanif, Muhammad
    Shahzad, Usman
    Ali, Nasir
    JOURNAL OF SCIENCE AND ARTS, 2023, (03): : 571 - 586
  • [29] Optimal spatial sampling schemes for environmental surveys
    Di Zio, S
    Fontanella, L
    Ippoliti, L
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2004, 11 (04) : 397 - 414
  • [30] 2:1 Candidate Position Subsampling Technique for Fast Optimal Motion Estimation
    Lee, Hwal-Suk
    Jung, Jik-Han
    Park, Dong-Jo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2010, 20 (07) : 1052 - 1056