On optimal variance estimation under different spatial subsampling schemes

被引:2
|
作者
Nordman, DJ [1 ]
Lahiri, SN [1 ]
机构
[1] Univ Dortmund, Dept Stat, D-44221 Dortmund, Germany
关键词
D O I
10.1016/B978-044451378-6/50028-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a comprehensive examination of subsampling methods for spatial data on a grid. The considered subsamples may be scaled-down copies of the original sampling region or have a freely chosen shape. We derive the mean square error associated with general subsampling methods for estimating the variance of a large class of estimators. This yields an expression for the optimal subsample size for a given subsample shape. However, in contrast to the time series case, we show that the optimal subsample size and performance with each spatial subsampling method depends on the geometry of the sampling and subsampling regions in a nontrivial way. Examples for a few simple cases are presented to illustrate that both subsample size and shape may be selected to optimize spatial subsampling for variance estimation.
引用
收藏
页码:421 / 436
页数:16
相关论文
共 50 条
  • [1] Subsampling variance estimation for non-stationary spatial lattice data
    Ekstroem, Magnus
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (01) : 38 - 63
  • [2] On optimal spatial subsample size for variance estimation
    Nordman, DJ
    Lahiri, SN
    ANNALS OF STATISTICS, 2004, 32 (05): : 1981 - 2027
  • [3] Optimal distributed subsampling under heterogeneity
    Shao, Yujing
    Wang, Lei
    Lian, Heng
    STATISTICS AND COMPUTING, 2025, 35 (02)
  • [4] Bias-Corrected Variance Estimation and Hypothesis Testing for Spatial Point and Marked Point Processes Using Subsampling
    Guan, Yongtao
    BIOMETRICS, 2011, 67 (03) : 926 - 936
  • [5] OPTIMAL ESTIMATION OF CORRELATED RESPONSE VARIANCE UNDER ADDITIVE-MODELS
    KLEFFE, J
    PRASAD, NGN
    RAO, JNK
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (413) : 144 - 150
  • [6] Optimal design of spatial sampling schemes for winter wheat sown area estimation
    Wang Di
    Chen Zhongxin
    Zhou Qingbo
    Liu Jia
    2012 FIRST INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2012, : 492 - 497
  • [7] Optimal Schemes for Discrete Distribution Estimation under Local Differential Privacy
    Ye, Min
    Barg, Alexander
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 759 - 763
  • [8] Optimal Schemes for Discrete Distribution Estimation Under Locally Differential Privacy
    Ye, Min
    Barg, Alexander
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (08) : 5662 - 5676
  • [9] Compliance subsampling designs for comparative research: Estimation and optimal planning
    Frangakis, CE
    BIOMETRICS, 2001, 57 (03) : 899 - 908
  • [10] Optimal Mean Estimation without a Variance
    Cherapanamjeri, Yeshwanth
    Tripuraneni, Nilesh
    Bartlett, Peter L.
    Jordan, Michael I.
    CONFERENCE ON LEARNING THEORY, VOL 178, 2022, 178 : 356 - 357