Suppose that F(x) is an element of Z[[x]] is a Mahler function and that 1/b is in the radius of convergence of F(x) for an integer b >= 2. In this paper, we consider the approximation of F(1/b) by algebraic numbers. In particular, we prove that F(1/b) cannot be a Liouville number. If, in addition, F(x) is regular, we show that F(1/b) is either rational or transcendental, and in the latter case that F(1/b) is an S-number or a T-number in Mahler's classification of real numbers.
机构:
Univ Wisconsin, Dept Math & Stat, 1725 State St, La Crosse, WI 54601 USAUniv Wisconsin, Dept Math & Stat, 1725 State St, La Crosse, WI 54601 USA
Das, Tushar
Fishman, Lior
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Texas, Dept Math, 1155 Union Circle 311430, Denton, TX 76203 USAUniv Wisconsin, Dept Math & Stat, 1725 State St, La Crosse, WI 54601 USA
Fishman, Lior
Simmons, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ York, Dept Math, York YO10 5DD, N Yorkshire, EnglandUniv Wisconsin, Dept Math & Stat, 1725 State St, La Crosse, WI 54601 USA
Simmons, David
Urbanski, Mariusz
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Texas, Dept Math, 1155 Union Circle 311430, Denton, TX 76203 USAUniv Wisconsin, Dept Math & Stat, 1725 State St, La Crosse, WI 54601 USA