A variational principle in the parametric geometry of numbers, with applications to metric Diophantine approximation

被引:16
|
作者
Das, Tushar [1 ]
Fishman, Lior [2 ]
Simmons, David [3 ]
Urbanski, Mariusz [2 ]
机构
[1] Univ Wisconsin, Dept Math & Stat, 1725 State St, La Crosse, WI 54601 USA
[2] Univ North Texas, Dept Math, 1155 Union Circle 311430, Denton, TX 76203 USA
[3] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
HAUSDORFF DIMENSION;
D O I
10.1016/j.crma.2017.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a new connection between metric Diophantine approximation and the parametric geometry of numbers by proving a variational principle facilitating the computation of the Hausdorff and packing dimensions of many sets of interest in Diophantine approximation. In particular, we show that the Hausdorff and packing dimensions of the set of singular m x n matrices are both equal to m(1-1/m+n), thus proving a conjecture of Kadyrov, Kleinbock, Lindenstrauss, and Margulis as well as answering a question of Bugeaud, Cheung, and Chevallier. Other applications include computing the dimensions of the sets of points witnessing conjectures of Starkov and Schmidt. (C) 2017 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:835 / 846
页数:12
相关论文
共 50 条