Simulation of runaway electron generation during plasma shutdown by impurity injection in ITER

被引:54
|
作者
Feher, T. [1 ,2 ,3 ]
Smith, H. M. [1 ,4 ]
Fulop, T. [2 ,3 ]
Gal, K. [5 ]
机构
[1] Max Planck Inst Plasma Phys, Greifswald, Germany
[2] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden
[3] Euratom VR Assoc, Gothenburg, Sweden
[4] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany
[5] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary
关键词
DISRUPTION MITIGATION; DIII-D; TOKAMAK; JT-60U;
D O I
10.1088/0741-3335/53/3/035014
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Disruptions in a large tokamak can cause serious damage to the device and should be avoided or mitigated. Massive gas or killer pellet injection are possible ways to obtain a controlled fast plasma shutdown before a natural disruption occurs. In this work, plasma shutdown scenarios with different types of impurities are studied for an ITER-like plasma. Plasma cooling, runaway generation and the associated electric field diffusion are calculated with a 1D-code taking the Dreicer, hot-tail and avalanche runaway generation processes into account. Thin, radially localized sheets with high temperature can be created after the thermal quench, and the Dreicer and avalanche processes produce a high runaway current inside these sheets. At high impurity concentration the Dreicer process is suppressed but hot-tail runaways are created. Favorable thermal and current quench times can be achieved with a mixture of deuterium and neon or argon. However, to prevent the avalanche process from creating a significant runaway current fraction, it is found to be necessary to include runaway losses in the model.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Simulation of ultrashort electron pulse generation from optical injection into wake-field plasma waves
    Dodd, ES
    Kim, JK
    Umstadter, D
    PHYSICAL REVIEW E, 2004, 70 (05):
  • [42] Runaway electron beam generation and mitigation during disruptions at JET-ILW
    Reux, C.
    Plyusnin, V.
    Alper, B.
    Alves, D.
    Bazylev, B.
    Belonohy, E.
    Boboc, A.
    Brezinsek, S.
    Coffey, I.
    Decker, J.
    Drewelow, P.
    Devaux, S.
    de Vries, P. C.
    Fil, A.
    Gerasimov, S.
    Giacomelli, L.
    Jachmich, S.
    Khilkevitch, E. M.
    Kiptily, V.
    Koslowski, R.
    Kruezi, U.
    Lehnen, M.
    Lupelli, I.
    Lomas, P. J.
    Manzanares, A.
    Martin De Aguilera, A.
    Matthews, G. F.
    Mlynar, J.
    Nardon, E.
    Nilsson, E.
    von Thun, C. Perez
    Riccardo, V.
    Saint-Laurent, F.
    Shevelev, A. E.
    Sips, G.
    Sozzi, C.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    NUCLEAR FUSION, 2015, 55 (09)
  • [43] Runaway electron generation decrease during a major disruption by limiter biasing in tokamaks
    Ghanbari, M. R.
    Ghoranneviss, M.
    Mohammadi, S.
    Arvin, R.
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2013, 168 (09): : 664 - 674
  • [44] Optimum conditions of the runaway electron beam generation during a uniform gas breakdown
    S. I. Yakovlenko
    Bulletin of the Lebedev Physics Institute, 2007, 34 (2) : 61 - 65
  • [45] Assessment of the runaway electron load distribution in ITER during 3D MHD induced beam termination
    Bergstroem, Hannes
    Saerkimaeki, Konsta
    Bandaru, Vinodh
    Skyllas, M. M.
    Hoelzl, Matthias
    PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (09)
  • [46] Collisional-radiative simulation of impurity assimilation, radiative collapse and MHD dynamics after ITER shattered pellet injection
    Hu, D.
    Nardon, E.
    Artola, F. J.
    Lehnen, M.
    Bonfiglio, D.
    Hoelzl, M.
    Huijsmans, G. T. A.
    Lee, S. -j.
    NUCLEAR FUSION, 2023, 63 (06)
  • [47] Self-consistent modeling of runaway electron generation in massive gas injection scenarios in ASDEX Upgrade
    Linder, O.
    Fable, E.
    Jenko, F.
    Papp, G.
    Pautasso, G.
    NUCLEAR FUSION, 2020, 60 (09)
  • [48] Fokker-Planck simulation of runaway electron generation in disruptions with the hot-tail effect
    Nuga, H.
    Yagi, M.
    Fukuyama, A.
    PHYSICS OF PLASMAS, 2016, 23 (06)
  • [49] Plasma generation in a long, narrow, metal tube by electron beam injection
    Burdovitsin, V. A.
    Bakeev, I. Y.
    Karpov, K., I
    Oks, E. M.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2022, 31 (05):
  • [50] Simulation of weak electron beam injection into plasma with open boundary conditions
    Annenkov, Vladimir
    ASTRONOMY & ASTROPHYSICS, 2025, 693