Simulation of runaway electron generation during plasma shutdown by impurity injection in ITER

被引:54
|
作者
Feher, T. [1 ,2 ,3 ]
Smith, H. M. [1 ,4 ]
Fulop, T. [2 ,3 ]
Gal, K. [5 ]
机构
[1] Max Planck Inst Plasma Phys, Greifswald, Germany
[2] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden
[3] Euratom VR Assoc, Gothenburg, Sweden
[4] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany
[5] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary
关键词
DISRUPTION MITIGATION; DIII-D; TOKAMAK; JT-60U;
D O I
10.1088/0741-3335/53/3/035014
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Disruptions in a large tokamak can cause serious damage to the device and should be avoided or mitigated. Massive gas or killer pellet injection are possible ways to obtain a controlled fast plasma shutdown before a natural disruption occurs. In this work, plasma shutdown scenarios with different types of impurities are studied for an ITER-like plasma. Plasma cooling, runaway generation and the associated electric field diffusion are calculated with a 1D-code taking the Dreicer, hot-tail and avalanche runaway generation processes into account. Thin, radially localized sheets with high temperature can be created after the thermal quench, and the Dreicer and avalanche processes produce a high runaway current inside these sheets. At high impurity concentration the Dreicer process is suppressed but hot-tail runaways are created. Favorable thermal and current quench times can be achieved with a mixture of deuterium and neon or argon. However, to prevent the avalanche process from creating a significant runaway current fraction, it is found to be necessary to include runaway losses in the model.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Study of runaway electron generation during major disruptions in JET
    Plyusnin, VV
    Riccardo, V
    Jaspers, R
    Alper, B
    Kiptily, VG
    Mlynar, J
    Popovichev, S
    de la Luna, E
    Andersson, F
    NUCLEAR FUSION, 2006, 46 (02) : 277 - 284
  • [22] Runaway electron beam generation by a plasma cathode in atmospheric air discharge
    Mastyugin, D. S.
    Osipov, V. V.
    Solomonov, V. I.
    TECHNICAL PHYSICS LETTERS, 2009, 35 (06) : 487 - 490
  • [23] Simulation of main chamber wall temperature rise resulting from massive neon gas injection shutdown of ITER
    Hollmann, E. M.
    Humphreys, D. A.
    Parks, P. B.
    NUCLEAR FUSION, 2012, 52 (03)
  • [24] Impurity production and edge plasma pollution during ITER-FEAT ELMs
    Pestchanyi, SE
    Würz, H
    Landman, IS
    PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (06) : 845 - 853
  • [25] Fokker-Planck Simulation Study of Hot-Tail Effect on Runaway Electron Generation in ITER Disruptions (vol 11, 2403023, 2016)
    Nuga, Hideo
    Matsuyama, Akinobu
    Yagi, Masatoshi
    Fukuyama, Atsushi
    PLASMA AND FUSION RESEARCH, 2016, 11
  • [26] Runaway electron production during intense electron beam penetration in dense plasma
    Parks, P. B.
    Cowan, T. E.
    PHYSICS OF PLASMAS, 2007, 14 (01)
  • [27] Study of runaway electron dynamics at the ASDEX Upgrade tokamak during impurity injection using fast hard x-ray spectrometry
    Shevelev, A.
    Khilkevitch, E.
    Iliasova, M.
    Nocente, M.
    Pautasso, G.
    Papp, G.
    Molin, A. D.
    Pandya, S. P.
    Plyusnin, V
    Giacomelli, L.
    Gorini, G.
    Panontin, E.
    Rigamonti, D.
    Tardocchi, M.
    Tardini, G.
    Patel, A.
    Bogdanov, A.
    Chugunov, I
    Doinikov, D.
    Naidenov, V
    Polunovsky, I
    NUCLEAR FUSION, 2021, 61 (11)
  • [28] Runaway electron dynamics during impurity gas puffing on HT-7 tokamak
    Sajjad, S.
    Gao, X.
    Ling, B.
    Bhatti, S. H.
    Ang, T.
    PHYSICS OF PLASMAS, 2010, 17 (04)
  • [29] Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D
    Hollmann, E. M.
    Austin, M. E.
    Boedo, J. A.
    Brooks, N. H.
    Commaux, N.
    Eidietis, N. W.
    Humphreys, D. A.
    Izzo, V. A.
    James, A. N.
    Jernigan, T. C.
    Loarte, A.
    Martin-Solis, J.
    Moyer, R. A.
    Munoz-Burgos, J. M.
    Parks, P. B.
    Rudakov, D. L.
    Strait, E. J.
    Tsui, C.
    Van Zeeland, M. A.
    Wesley, J. C.
    Yu, J. H.
    NUCLEAR FUSION, 2013, 53 (08)
  • [30] Simulation studies of tungsten impurity behaviors in helium plasma in comparison with deuterium plasma via SOLPS-ITER
    Liu, Xiaoju
    Gao, Shanlu
    Shi, Qiqi
    Ming, Tingfeng
    Li, Guoqiang
    Gao, Xiang
    PHYSICS OF PLASMAS, 2024, 31 (06)