Simulation of runaway electron generation during plasma shutdown by impurity injection in ITER

被引:54
|
作者
Feher, T. [1 ,2 ,3 ]
Smith, H. M. [1 ,4 ]
Fulop, T. [2 ,3 ]
Gal, K. [5 ]
机构
[1] Max Planck Inst Plasma Phys, Greifswald, Germany
[2] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden
[3] Euratom VR Assoc, Gothenburg, Sweden
[4] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany
[5] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary
关键词
DISRUPTION MITIGATION; DIII-D; TOKAMAK; JT-60U;
D O I
10.1088/0741-3335/53/3/035014
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Disruptions in a large tokamak can cause serious damage to the device and should be avoided or mitigated. Massive gas or killer pellet injection are possible ways to obtain a controlled fast plasma shutdown before a natural disruption occurs. In this work, plasma shutdown scenarios with different types of impurities are studied for an ITER-like plasma. Plasma cooling, runaway generation and the associated electric field diffusion are calculated with a 1D-code taking the Dreicer, hot-tail and avalanche runaway generation processes into account. Thin, radially localized sheets with high temperature can be created after the thermal quench, and the Dreicer and avalanche processes produce a high runaway current inside these sheets. At high impurity concentration the Dreicer process is suppressed but hot-tail runaways are created. Favorable thermal and current quench times can be achieved with a mixture of deuterium and neon or argon. However, to prevent the avalanche process from creating a significant runaway current fraction, it is found to be necessary to include runaway losses in the model.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Runaway electron generation during plasma shutdown by killer pellet injection
    Gal, K.
    Feher, T.
    Smith, H.
    Fulop, T.
    Helander, P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (05)
  • [2] Fast plasma shutdown by killer pellet injection in JT-60U with reduced heat flux on the divertor plate and avoiding runaway electron generation
    Yoshino, R
    Kondoh, T
    Neyatani, Y
    Itami, K
    Kawano, Y
    Isei, N
    PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (02) : 313 - 332
  • [3] The effect of ITER-like wall on runaway electron generation in JET
    Papp, G.
    Fulop, T.
    Feher, T.
    de Vries, P. C.
    Riccardo, V.
    Reux, C.
    Lehnen, M.
    Kiptily, V.
    Plyusnin, V. V.
    Alper, B.
    NUCLEAR FUSION, 2013, 53 (12)
  • [4] Simulation of the electron runaway in a plasma by Langevin equation
    Zhidkov, AG
    PHYSICS OF PLASMAS, 1998, 5 (02) : 385 - 389
  • [5] Fokker-Planck Simulation Study of Hot-Tail Effect on Runaway Electron Generation in ITER Disruptions
    Nuga, Hideo
    Matsuyama, Akinobu
    Yagi, Masatoshi
    Fukuyama, Atsushi
    PLASMA AND FUSION RESEARCH, 2016, 11
  • [6] Fokker-planck simulation study of hot-tail effect on runaway electron generation in ITER disruptions
    Nuga, Hideo
    Matsuyama, Akinobu
    Yagi, Masatoshi
    Fukuyama, Atsushi
    Plasma and Fusion Research, 2016, 11 (Specialissue1):
  • [7] ITER divertor plasma response to time-dependent impurity injection
    Bonnin, X.
    Pitts, R. A.
    Komarov, V.
    Escourbiac, F.
    Merola, M.
    Bo, L.
    Wei, L.
    Pan, L.
    Kukushkin, A. S.
    NUCLEAR MATERIALS AND ENERGY, 2017, 12 : 1100 - 1105
  • [8] Lagrangian particle simulation of hydrogen pellets and SPI into runaway electron beam in ITER
    Yuan, Shaohua
    Naitlho, Nizar
    Samulyak, Roman
    Pegourie, Bernard
    Nardon, Eric
    Hollmann, Eric
    Parks, Paul
    Lehnen, Michael
    PHYSICS OF PLASMAS, 2022, 29 (10)
  • [9] Cross-machine comparison of runaway electron generation during tokamak start-up for extrapolation to ITER
    de Vries, P. C.
    Lee, Y.
    Gribov, Y.
    Mineev, A. B.
    Na, Y. S.
    Granetz, R.
    Stein-Lubrano, B.
    Reux, C.
    Moreau, Ph.
    Kiptily, V.
    Esposito, B.
    Battaglia, D. J.
    Martin-Solis, J. R.
    NUCLEAR FUSION, 2023, 63 (08)
  • [10] Runaway electron confinement modelling for rapid shutdown scenarios in DIII-D, Alcator C-Mod and ITER
    Izzo, V. A.
    Hollmann, E. M.
    James, A. N.
    Yu, J. H.
    Humphreys, D. A.
    Lao, L. L.
    Parks, P. B.
    Sieck, P. E.
    Wesley, J. C.
    Granetz, R. S.
    Olynyk, G. M.
    Whyte, D. G.
    NUCLEAR FUSION, 2011, 51 (06)