Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev-Orlicz spaces

被引:19
|
作者
Mukminov, F. Kh. [1 ]
机构
[1] Russian Acad Sci, Ufa Sci Ctr, Inst Math Comp Ctr, Ufa, Russia
基金
俄罗斯基础研究基金会;
关键词
anisotropic parabolic equation; renormalized solution; variable nonlinearity; uniqueness of solution; N-function; ENTROPY SOLUTIONS; EXISTENCE; EQUATION; DECAY;
D O I
10.1070/SM8691
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the first mixed problem for a class of anisotropic elliptic-parabolic equations with double variable nonlinearities in a cylindrical domain (0, T) x Omega. The domain Omega subset of R-n can be unbounded. The uniqueness of the renormalized solution is proved using Kruzhkov's method of doubling the variable t. The same result is established for an equation with non-power law nonlinearities.
引用
收藏
页码:1187 / 1206
页数:20
相关论文
共 50 条
  • [31] Density of smooth functions in Sobolev-Orlicz spaces
    Zhikov V.V.
    Journal of Mathematical Sciences, 2006, 132 (3) : 285 - 294
  • [32] An elliptic-parabolic problem
    Benilan, P
    Wittbold, P
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (01): : 121 - 127
  • [33] On some nonlinear elliptic problems in anisotropic Orlicz–Sobolev spaces
    Rabab Elarabi
    Badr Lahmi
    Hakima Ouyahya
    Advances in Operator Theory, 2023, 8
  • [34] Existence of Renormalized Solution of Some Elliptic Problems in Orlicz Spaces
    Aharouch, Lahsen
    Bennouna, Jaouad
    Touzani, Abdelfettah
    REVISTA MATEMATICA COMPLUTENSE, 2009, 22 (01): : 91 - 110
  • [35] On imbedding theorems for Sobolev-Orlicz spaces of infinite order
    Bang, HH
    DOKLADY AKADEMII NAUK, 1997, 354 (03) : 316 - 319
  • [36] Capacity solution to a coupled system of parabolic-elliptic equations in Orlicz-Sobolev spaces
    Moussa, H.
    Ortegon Gallego, F.
    Rhoudaf, M.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2018, 25 (02):
  • [38] UNIQUENESS OF THE RENORMALIZED SOLUTIONS TO THE CAUCHY PROBLEM FOR AN ANISOTROPIC PARABOLIC EQUATION
    Mukminov, F. Kh.
    UFA MATHEMATICAL JOURNAL, 2016, 8 (02): : 44 - 57
  • [39] INTERPOLATION SPACES AND TRACE SPACES OF SOBOLEV-ORLICZ SPACES OF ORDER 1
    LACROIX, MT
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (05): : 271 - 274
  • [40] On the existence of capacity solution for a perturbed thermistor problem in anisotropic Orlicz-Sobolev spaces
    Ouyahya, Hakima
    Rhoudaf, Mohamed
    Talbi, Hajar
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) : 595 - 625