Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev-Orlicz spaces

被引:19
|
作者
Mukminov, F. Kh. [1 ]
机构
[1] Russian Acad Sci, Ufa Sci Ctr, Inst Math Comp Ctr, Ufa, Russia
基金
俄罗斯基础研究基金会;
关键词
anisotropic parabolic equation; renormalized solution; variable nonlinearity; uniqueness of solution; N-function; ENTROPY SOLUTIONS; EXISTENCE; EQUATION; DECAY;
D O I
10.1070/SM8691
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the first mixed problem for a class of anisotropic elliptic-parabolic equations with double variable nonlinearities in a cylindrical domain (0, T) x Omega. The domain Omega subset of R-n can be unbounded. The uniqueness of the renormalized solution is proved using Kruzhkov's method of doubling the variable t. The same result is established for an equation with non-power law nonlinearities.
引用
收藏
页码:1187 / 1206
页数:20
相关论文
共 50 条