J-holomorphic curves and Dirac-harmonic maps

被引:0
|
作者
Hamilton, M. J. D. [1 ]
机构
[1] Univ Stuttgart, Fachbereich Math, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
Dirac-harmonic map; J-holomorphic curve; Kahler manifold; REGULARITY;
D O I
10.1016/j.difgeo.2019.101587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dirac-harmonic maps are critical points of a fermionic action functional, generalizing the Dirichlet energy for harmonic maps. We consider the case where the source manifold is a closed Riemann surface with the canonical Spin(c)-structure determined by the complex structure and the target space is a Kahler manifold. If the underlying map f is a J-holomorphic curve, we determine a space of spinors on the Riemann surface which form Dirac-harmonic maps together with f. For suitable complex structures on the target manifold the tangent bundle to the moduli space of J-holomorphic curves consists of Dirac-harmonic maps. We also discuss the relation to the A-model of topological string theory. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] A reverse isoperimetric inequality for J-holomorphic curves
    Groman, Yoel
    Solomon, Jake P.
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (05) : 1448 - 1515
  • [32] Dirac-harmonic maps from index theory
    Ammann, Bernd
    Ginoux, Nicolas
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 47 (3-4) : 739 - 762
  • [33] Nongeneric J-holomorphic curves and singular inflation
    McDuff, Dusa
    Opshtein, Emmanuel
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (01): : 231 - 286
  • [34] J-holomorphic curves with boundary in bounded geometry
    Groman, Yoel
    Solomon, Jake P.
    JOURNAL OF SYMPLECTIC GEOMETRY, 2016, 14 (03) : 767 - 809
  • [35] A reverse isoperimetric inequality for J-holomorphic curves
    Yoel Groman
    Jake P. Solomon
    Geometric and Functional Analysis, 2014, 24 : 1448 - 1515
  • [36] Dirac-harmonic maps from index theory
    Bernd Ammann
    Nicolas Ginoux
    Calculus of Variations and Partial Differential Equations, 2013, 47 : 739 - 762
  • [37] Regularity for weakly Dirac-harmonic maps to hypersurfaces
    Zhu, Miaomiao
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (04) : 405 - 412
  • [38] Some explicit constructions of Dirac-harmonic maps
    Jost, Juergen
    Mo, Xiaohuan
    Zhu, Miaomiao
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (11) : 1512 - 1527
  • [39] DIRAC-HARMONIC MAPS BETWEEN RIEMANN SURFACES
    Chen, Qun
    Jost, Jurgen
    Sun, Linlin
    Zhu, Miaomiao
    ASIAN JOURNAL OF MATHEMATICS, 2019, 23 (01) : 107 - 125
  • [40] The maximum principle and the Dirichlet problem for Dirac-harmonic maps
    Qun Chen
    Jürgen Jost
    Guofang Wang
    Calculus of Variations and Partial Differential Equations, 2013, 47 : 87 - 116