J-holomorphic curves and Dirac-harmonic maps

被引:0
|
作者
Hamilton, M. J. D. [1 ]
机构
[1] Univ Stuttgart, Fachbereich Math, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
Dirac-harmonic map; J-holomorphic curve; Kahler manifold; REGULARITY;
D O I
10.1016/j.difgeo.2019.101587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dirac-harmonic maps are critical points of a fermionic action functional, generalizing the Dirichlet energy for harmonic maps. We consider the case where the source manifold is a closed Riemann surface with the canonical Spin(c)-structure determined by the complex structure and the target space is a Kahler manifold. If the underlying map f is a J-holomorphic curve, we determine a space of spinors on the Riemann surface which form Dirac-harmonic maps together with f. For suitable complex structures on the target manifold the tangent bundle to the moduli space of J-holomorphic curves consists of Dirac-harmonic maps. We also discuss the relation to the A-model of topological string theory. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条