Dirac-harmonic maps are critical points of a fermionic action functional, generalizing the Dirichlet energy for harmonic maps. We consider the case where the source manifold is a closed Riemann surface with the canonical Spin(c)-structure determined by the complex structure and the target space is a Kahler manifold. If the underlying map f is a J-holomorphic curve, we determine a space of spinors on the Riemann surface which form Dirac-harmonic maps together with f. For suitable complex structures on the target manifold the tangent bundle to the moduli space of J-holomorphic curves consists of Dirac-harmonic maps. We also discuss the relation to the A-model of topological string theory. (C) 2019 Elsevier B.V. All rights reserved.