J-holomorphic curves and Dirac-harmonic maps

被引:0
|
作者
Hamilton, M. J. D. [1 ]
机构
[1] Univ Stuttgart, Fachbereich Math, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
Dirac-harmonic map; J-holomorphic curve; Kahler manifold; REGULARITY;
D O I
10.1016/j.difgeo.2019.101587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dirac-harmonic maps are critical points of a fermionic action functional, generalizing the Dirichlet energy for harmonic maps. We consider the case where the source manifold is a closed Riemann surface with the canonical Spin(c)-structure determined by the complex structure and the target space is a Kahler manifold. If the underlying map f is a J-holomorphic curve, we determine a space of spinors on the Riemann surface which form Dirac-harmonic maps together with f. For suitable complex structures on the target manifold the tangent bundle to the moduli space of J-holomorphic curves consists of Dirac-harmonic maps. We also discuss the relation to the A-model of topological string theory. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Dirac-harmonic maps
    Qun Chen
    Jürgen Jost
    Jiayu Li
    Guofang Wang
    Mathematische Zeitschrift, 2006, 254 : 409 - 432
  • [2] Dirac-harmonic maps
    Chen, Qun
    Jost, Juergen
    Li, Jiayu
    Wang, Guofang
    MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (02) : 409 - 432
  • [3] Singularities of J-holomorphic curves
    Sikorav, JC
    MATHEMATISCHE ZEITSCHRIFT, 1997, 226 (03) : 359 - 373
  • [4] Magnetic Dirac-harmonic maps
    Branding, Volker
    ANALYSIS AND MATHEMATICAL PHYSICS, 2015, 5 (01) : 23 - 37
  • [5] No neck for Dirac-harmonic maps
    Lei Liu
    Calculus of Variations and Partial Differential Equations, 2015, 52 : 1 - 15
  • [6] Regularity of Dirac-Harmonic Maps
    Wang, Changyou
    Xu, Deliang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (20) : 3759 - 3792
  • [7] Magnetic Dirac-harmonic maps
    Volker Branding
    Analysis and Mathematical Physics, 2015, 5 : 23 - 37
  • [8] Dirac-harmonic maps with potential
    Branding, Volker
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (04)
  • [9] No neck for Dirac-harmonic maps
    Liu, Lei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (1-2) : 1 - 15
  • [10] Dirac-harmonic maps with torsion
    Branding, Volker
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (04)