Bifurcation of Limit Cycles from a Polynomial Degenerate Center

被引:1
|
作者
Buica, Adriana [1 ]
Gine, Jaume [2 ]
Llibre, Jaume [3 ]
机构
[1] Univ Babes Bolyai, Dept Appl Math, RO-400084 Cluj Napoca, Romania
[2] Univ Lleida, Dept Matemat, Lleida, Catalonia, Spain
[3] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
limit cycles; degenerate center; polynomial differential system; INTEGRABILITY; OSCILLATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Melnikov functions at any order, we provide upper bounds for the maximum number of limit cycles bifurcating from the period annulus of the degenerate center (x) over dot = -y((x(2) + y(2))/2)(m) and (y) over dot = x((x(2) + y(2))/2)(m) with m >= 1, when we perturb it inside the whole class of polynomial vector fields of degree n. The positive integers m and n are arbitrary. As far as we know there is only one paper that provide a similar result working with Melnikov functions at any order and perturbing the linear center (x) over dot = -y, (y) over dot = x.
引用
收藏
页码:597 / 609
页数:13
相关论文
共 50 条
  • [31] THE CENTER-FOCUS PROBLEM AND BIFURCATION OF LIMIT CYCLES IN A CLASS OF 7TH-DEGREE POLYNOMIAL SYSTEMS
    Sang, Bo
    Wang, Qinlong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (03): : 817 - 826
  • [32] Bifurcation of limit cycles
    Perko, L.M.
    Lecture Notes in Mathematics, 1990, 1455
  • [33] The Number of Limit Cycles Bifurcating from a Degenerate Center of Piecewise Smooth Differential Systems
    Wei, Lijun
    Xu, Yancong
    Zhang, Xiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (05):
  • [34] Simultaneous bifurcation of limit cycles from a cubic piecewise center with two period annuli
    da Cruz, Leonardo P. C.
    Torregrosa, Joan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (01) : 248 - 272
  • [35] Bifurcation of Limit Cycles from a Quintic Center via the Second Order Averaging Method
    Peng, Linping
    Feng, Zhaosheng F
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (03):
  • [36] Bifurcation of limit cycles from a 4-dimensional center in 1:n resonance
    Llibre, Jaume
    Makhlouf, Amar
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (01) : 140 - 146
  • [37] On the number of limit cycles of a perturbed cubic polynomial differential center
    Li, Shimin
    Zhao, Yulin
    Li, Jun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 404 (02) : 212 - 220
  • [38] ON BIFURCATION OF LIMIT-CYCLES FROM CENTERS
    CHICONE, C
    LECTURE NOTES IN MATHEMATICS, 1990, 1455 : 20 - 43
  • [39] Bifurcation of limit cycles in quadratic Hamiltonian systems with various degree polynomial perturbations
    Yu, P.
    Han, M.
    CHAOS SOLITONS & FRACTALS, 2012, 45 (06) : 772 - 794
  • [40] An Improvement on the Number of Limit Cycles Bifurcating from a Nondegenerate Center of Homogeneous Polynomial Systems
    Yu, Pei
    Han, Maoan
    Li, Jibin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (06):