Bifurcation of Limit Cycles from a Polynomial Degenerate Center

被引:1
|
作者
Buica, Adriana [1 ]
Gine, Jaume [2 ]
Llibre, Jaume [3 ]
机构
[1] Univ Babes Bolyai, Dept Appl Math, RO-400084 Cluj Napoca, Romania
[2] Univ Lleida, Dept Matemat, Lleida, Catalonia, Spain
[3] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
limit cycles; degenerate center; polynomial differential system; INTEGRABILITY; OSCILLATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Melnikov functions at any order, we provide upper bounds for the maximum number of limit cycles bifurcating from the period annulus of the degenerate center (x) over dot = -y((x(2) + y(2))/2)(m) and (y) over dot = x((x(2) + y(2))/2)(m) with m >= 1, when we perturb it inside the whole class of polynomial vector fields of degree n. The positive integers m and n are arbitrary. As far as we know there is only one paper that provide a similar result working with Melnikov functions at any order and perturbing the linear center (x) over dot = -y, (y) over dot = x.
引用
收藏
页码:597 / 609
页数:13
相关论文
共 50 条