Biodegradable microfibrillar polymer-polymer composites from poly(L-lactic acid)/poly(glycolic acid)

被引:19
|
作者
Kimble, L. D. [1 ]
Bhattacharyya, D. [1 ]
Fakirov, S. [1 ]
机构
[1] Univ Auckland, Ctr Adv Composite Mat, Auckland 1, New Zealand
来源
EXPRESS POLYMER LETTERS | 2015年 / 9卷 / 03期
关键词
biocompatible polymers; biodegradable polymers; mechanical properties; microfibrillar polymer-polymer composites; viscoelasticity; REINFORCED COMPOSITES; MECHANICAL-PROPERTIES; STENT THROMBOSIS; CORONARY STENTS; BLENDS; RESTENOSIS; MORPHOLOGY;
D O I
10.3144/expresspolymlett.2015.27
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biodegradable coronary stents have been under development for several years and a trend in biodegradable stent material development has emerged: reinforcement to enhance mechanical properties and creep resistance to improve vessel support. The aim of this work is to investigate the mechanical and viscoelastic characteristics of poly(L-lactic acid)/poly(glycolic acid) (PLLA/PGA) microfibrillar polymer-polymer composites (MFCs) at 37 degrees C to determine the suitability of PGA fibrils as a reinforcement for polymeric, biodegradable stents. PLLA/PGA MFCs were produced via cold-drawing and subsequent compression moulding of extruded PLLA/PGA blend wires. Scanning electron microscopy revealed excellent fibril formation in the case of a 70/30 wt% PLLA/PGA MFC- the mean fibril diameter being 400 nm and aspect ratios exceeding 250. Tensile tests demonstrate Young's modulus and strength increases of 35 and 84% over neat PLLA in the case of a 70/30 wt% PLLA/PGA MFC. Creep resistance of the PLLA/PGA MFCs is lower than that of neat PLLA, as shown via relaxation. Dynamic mechanical thermal analysis demonstrates that it is the onset of glass transition of PGA that is the underlying cause for low creep resistance of the PLLA/PGA MFCs at 37 degrees C.
引用
收藏
页码:300 / 307
页数:8
相关论文
共 50 条
  • [41] On the Recycling of a Biodegradable Polymer: Multiple Extrusion of Poly (Lactic Acid)
    Garcia Goncalves, Livia Maria
    Rigolin, Talita Rocha
    Frenhe, Bianca Maia
    Prado Bettini, Silvia Helena
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2020, 23 (05):
  • [42] Tensile fracture behavior of a biodegradable polymer, poly(lactic acid)
    Arakawa, Kazuo
    Mada, Toshio
    Park, Sang-Dae
    Todo, Mitsugu
    POLYMER TESTING, 2006, 25 (05) : 628 - 634
  • [43] Conformational differences of poly(L-lactic acid) and poly(D,L-lactic acid) in dilute solutions
    G. M. Pavlov
    O. A. Dommes
    I. V. Aver’yanov
    G. F. Kolbina
    O. V. Okatova
    V. A. Korzhikov
    A. V. Dobrodumov
    T. B. Tennikova
    Doklady Chemistry, 2015, 465 : 261 - 264
  • [44] The preparation and biodegradable properties of poly(L-lactic acid)-poly(ε-caprolactone) multiblock copolymers
    Teng, Cuiqing
    Xu, Hong
    Yang, Kai
    Yu, Muhuo
    JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2006, 43 (11): : 1877 - 1886
  • [45] Thermal properties and crystallization of biodegradable poly(L-lactic acid) and poly(β-hydroxynonanzoate) blend
    Park, SH
    Kim, YB
    Lee, DS
    POLYMER-KOREA, 2000, 24 (04) : 477 - 487
  • [46] Poly(L-lactic acid)-polyethylene glycol-poly(L-lactic acid) triblock copolymer: A novel macromolecular plasticizer to enhance the crystallization of poly(L-lactic acid)
    Li, Le
    Cao, Zhi-Qiang
    Bao, Rui-Ying
    Xie, Bang-Hu
    Yang, Ming-Bo
    Yang, Wei
    EUROPEAN POLYMER JOURNAL, 2017, 97 : 272 - 281
  • [47] Porous and dense poly(L-lactic acid) and poly(D,L-lactic acid-co-glycolic acid) scaffolds: In vitro degradation in culture medium and osteoblasts culture
    S. H. Barbanti
    A. R. Santos
    C. A. C. Zavaglia
    E. A. R. Duek
    Journal of Materials Science: Materials in Medicine, 2004, 15 : 1315 - 1321
  • [48] The melting of poly (L-lactic acid)
    Hay, James N. (j.n.hay@bham.ac.uk), 1600, Elsevier Ltd (100):
  • [49] Antitumour characteristics of irinotecan-containing microspheres of poly-d,l-lactic acid or poly(d,l-lactic acid-co-glycolic acid) copolymers
    Machida, Y
    Onishi, H
    Morikawa, A
    Machida, Y
    STP PHARMA SCIENCES, 1998, 8 (03): : 175 - 181
  • [50] Porous and dense poly(L-lactic acid) and poly(D,L-lactic acid co-glycolic acid) scaffolds:: In vitro degradation in culture medium and osteoblasts culture
    Barbanti, SH
    Santos, AR
    Zavaglia, CAC
    Duek, EAR
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2004, 15 (12) : 1315 - 1321