Biodegradable microfibrillar polymer-polymer composites from poly(L-lactic acid)/poly(glycolic acid)

被引:19
|
作者
Kimble, L. D. [1 ]
Bhattacharyya, D. [1 ]
Fakirov, S. [1 ]
机构
[1] Univ Auckland, Ctr Adv Composite Mat, Auckland 1, New Zealand
来源
EXPRESS POLYMER LETTERS | 2015年 / 9卷 / 03期
关键词
biocompatible polymers; biodegradable polymers; mechanical properties; microfibrillar polymer-polymer composites; viscoelasticity; REINFORCED COMPOSITES; MECHANICAL-PROPERTIES; STENT THROMBOSIS; CORONARY STENTS; BLENDS; RESTENOSIS; MORPHOLOGY;
D O I
10.3144/expresspolymlett.2015.27
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biodegradable coronary stents have been under development for several years and a trend in biodegradable stent material development has emerged: reinforcement to enhance mechanical properties and creep resistance to improve vessel support. The aim of this work is to investigate the mechanical and viscoelastic characteristics of poly(L-lactic acid)/poly(glycolic acid) (PLLA/PGA) microfibrillar polymer-polymer composites (MFCs) at 37 degrees C to determine the suitability of PGA fibrils as a reinforcement for polymeric, biodegradable stents. PLLA/PGA MFCs were produced via cold-drawing and subsequent compression moulding of extruded PLLA/PGA blend wires. Scanning electron microscopy revealed excellent fibril formation in the case of a 70/30 wt% PLLA/PGA MFC- the mean fibril diameter being 400 nm and aspect ratios exceeding 250. Tensile tests demonstrate Young's modulus and strength increases of 35 and 84% over neat PLLA in the case of a 70/30 wt% PLLA/PGA MFC. Creep resistance of the PLLA/PGA MFCs is lower than that of neat PLLA, as shown via relaxation. Dynamic mechanical thermal analysis demonstrates that it is the onset of glass transition of PGA that is the underlying cause for low creep resistance of the PLLA/PGA MFCs at 37 degrees C.
引用
收藏
页码:300 / 307
页数:8
相关论文
共 50 条
  • [31] Construction of fully biodegradable poly(L-lactic acid)/poly(D-lactic acid)-poly(lactide-co-caprolactone) block polymer films: Viscoelasticity, processability and flexibility
    He, Wenjun
    Ye, Lin
    Coates, Phil
    Caton-Rose, Fin
    Zhao, Xiaowen
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 236
  • [32] Cocrystallization of monomer units of biobased and biodegradable Poly(l-lactic acid-co-glycolic acid) random copolymers
    Hideto Tsuji
    Koudai Kikkawa
    Yuki Arakawa
    Polymer Journal, 2018, 50 : 1079 - 1088
  • [33] Biodegradable Magnesium Alloy (ZK60) with a Poly(l-lactic)-Acid Polymer Coating for Maxillofacial Surgery
    Byun, Soo-Hwan
    Lim, Ho-Kyung
    Lee, Sung-Mi
    Kim, Hyoun-Ee
    Kim, Soung-Min
    Lee, Jong-Ho
    METALS, 2020, 10 (06)
  • [34] A comparative study of glycolic acid and L-lactic acid on modification of poly(butylene succinate)
    Tian, Weihua
    Tu, Zhu
    Liu, Lipeng
    Wei, Zhiyong
    POLYMER DEGRADATION AND STABILITY, 2022, 206
  • [35] A comparative study of glycolic acid and L-lactic acid on modification of poly(butylene succinate)
    Tian, Weihua
    Tu, Zhu
    Liu, Lipeng
    Wei, Zhiyong
    POLYMER DEGRADATION AND STABILITY, 2022, 206
  • [36] Poly(Lactic Acid) Based Polymer Composites for Biomedicine
    Lebedev, Sergey M.
    Khlusov, Igor A.
    Chistokhin, Dmitry M.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY, 2020, 2310
  • [37] Modification of poly(L-lactic acid) with L-lactic acid citric acid oligomers
    Jiang, Yan
    Bai, Yun
    Chen, Man
    Yao, Fanglian
    Zhang, Haiyue
    Yao, Kang De
    E-POLYMERS, 2006,
  • [38] Conformational differences of poly(L-lactic acid) and poly(D,L-lactic acid) in dilute solutions
    Pavlov, G. M.
    Dommes, O. A.
    Aver'yanov, I. V.
    Kolbina, G. F.
    Okatova, O. V.
    Korzhikov, V. A.
    Dobrodumov, A. V.
    Tennikova, T. B.
    DOKLADY CHEMISTRY, 2015, 465 : 261 - 264
  • [39] WETTING OF POLY(L-LACTIC ACID) AND POLY(DL-LACTIC-CO-GLYCOLIC ACID) FOAMS FOR TISSUE-CULTURE
    MIKOS, AG
    LYMAN, MD
    FREED, LE
    LANGER, R
    BIOMATERIALS, 1994, 15 (01) : 55 - 58
  • [40] Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates
    Chen, GP
    Ushida, T
    Tateishi, T
    BIOMATERIALS, 2001, 22 (18) : 2563 - 2567