Biodegradable microfibrillar polymer-polymer composites from poly(L-lactic acid)/poly(glycolic acid)

被引:19
|
作者
Kimble, L. D. [1 ]
Bhattacharyya, D. [1 ]
Fakirov, S. [1 ]
机构
[1] Univ Auckland, Ctr Adv Composite Mat, Auckland 1, New Zealand
来源
EXPRESS POLYMER LETTERS | 2015年 / 9卷 / 03期
关键词
biocompatible polymers; biodegradable polymers; mechanical properties; microfibrillar polymer-polymer composites; viscoelasticity; REINFORCED COMPOSITES; MECHANICAL-PROPERTIES; STENT THROMBOSIS; CORONARY STENTS; BLENDS; RESTENOSIS; MORPHOLOGY;
D O I
10.3144/expresspolymlett.2015.27
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biodegradable coronary stents have been under development for several years and a trend in biodegradable stent material development has emerged: reinforcement to enhance mechanical properties and creep resistance to improve vessel support. The aim of this work is to investigate the mechanical and viscoelastic characteristics of poly(L-lactic acid)/poly(glycolic acid) (PLLA/PGA) microfibrillar polymer-polymer composites (MFCs) at 37 degrees C to determine the suitability of PGA fibrils as a reinforcement for polymeric, biodegradable stents. PLLA/PGA MFCs were produced via cold-drawing and subsequent compression moulding of extruded PLLA/PGA blend wires. Scanning electron microscopy revealed excellent fibril formation in the case of a 70/30 wt% PLLA/PGA MFC- the mean fibril diameter being 400 nm and aspect ratios exceeding 250. Tensile tests demonstrate Young's modulus and strength increases of 35 and 84% over neat PLLA in the case of a 70/30 wt% PLLA/PGA MFC. Creep resistance of the PLLA/PGA MFCs is lower than that of neat PLLA, as shown via relaxation. Dynamic mechanical thermal analysis demonstrates that it is the onset of glass transition of PGA that is the underlying cause for low creep resistance of the PLLA/PGA MFCs at 37 degrees C.
引用
收藏
页码:300 / 307
页数:8
相关论文
共 50 条
  • [1] Poly(L-lactic acid)/poly(glycolic acid) microfibrillar polymer-polymer composites: Preparation and viscoelastic properties
    Kimble, L. D.
    Fakirov, S.
    Bhattacharyya, D.
    PROCEEDINGS OF PPS-30: THE 30TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY, 2015, 1664
  • [2] Biodegradable polymer blends of Poly(L-lactic acid) and gelatinized starch
    Park, JW
    Im, SS
    Kim, SH
    Kim, YH
    POLYMER ENGINEERING AND SCIENCE, 2000, 40 (12): : 2539 - 2550
  • [3] POLY(LACTIC GLYCOLIC ACID) BIODEGRADABLE DRUG POLYMER MATRIX SYSTEMS
    KITCHELL, JP
    WISE, DL
    METHODS IN ENZYMOLOGY, 1985, 112 : 436 - 448
  • [4] Effect of Poly(L-lactic acid) on Hydrolytic Degradation of Poly(glycolic acid)
    Zhao, Na
    Ma, Zhigang
    Xiong, Chengdong
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS, 2012, 61 (08) : 587 - 595
  • [5] Effect of biodegradable polymer poly (L-lactic acid) on the cellular function of human astrocytes
    Nakamura, Naohito
    Tsuchiya, Toshie
    ANIMAL CELL TECHNOLOGY: BASIC & APPLIED ASPECTS, VOL 14, 2006, : 331 - +
  • [6] Poly(D, L-Lactic Acid) (PDLLA) Biodegradable and Biocompatible Polymer Optical Fiber
    Gierej, Agnieszka
    Vagenende, Maxime
    Filipkowski, Adam
    Siwicki, Bartlotniej
    Buczynski, Ryszard
    Thienpont, Hugo
    Van Vlierberghe, Sandra
    Geernaert, Thomas
    Dubruel, Peter
    Berghmans, Francis
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (09) : 1916 - 1923
  • [7] Enzymatic degradation of biodegradable polyester composites of Poly(L-lactic acid) and poly(ε-caprolactone)
    Tsuji, Hideto
    Kidokoro, Yuki
    Mochizuki, Masatusgu
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2006, 291 (10) : 1245 - 1254
  • [8] Isothermal Crystallization and Melting Behavior of Composites Composed of Poly(L-lactic Acid) and Poly(glycolic Acid) Fibers
    Chen, Hechun
    Ma, Chi
    Bai, Wei
    Chen, Dongliang
    Xiong, Chengdong
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2014, 53 (11): : 1715 - 1725
  • [9] Microfiltration membrane of polymer blend of poly(L-lactic acid) and poly(ε-caprolactone)
    Tanaka, T
    Tsuchiya, T
    Takahashi, H
    Masayuki, T
    Lloyd, DR
    DESALINATION, 2006, 193 (1-3) : 367 - 374
  • [10] Microporous foams of polymer blends of poly(L-lactic acid) and poly(ε-caprolactone)
    Tanaka, Takaaki
    Eguchi, Satoko
    Saitoh, Hiroshi
    Taniguchi, Masayuki
    Lloyd, Douglas R.
    DESALINATION, 2008, 234 (1-3) : 175 - 183