Pyramid nano-voids in GaN and InGaN

被引:0
|
作者
Yankovich, A. B. [1 ]
Kvit, A. V. [1 ]
Liu, H. Y. [2 ]
Li, X. [2 ]
Zhang, F. [2 ]
Avrutin, V. [2 ]
Izyumskaya, N. [2 ]
Ozgur, U. [2 ]
Morkoc, H. [2 ]
Voyles, P. M. [1 ]
机构
[1] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA
[2] Virginia Commonwealth Univ, Dept Elect & Comp Engn, Richmond, VA 23284 USA
来源
GALLIUM NITRIDE MATERIALS AND DEVICES VII | 2012年 / 8262卷
关键词
aberration-corrected STEM; void; InGaN; GaN; quantum wells; light emitting diode; LIGHT-EMITTING-DIODES; TRANSMISSION ELECTRON-MICROSCOPY; DEFECT FORMATION; DOPED ZNO; V-DEFECTS; QUANTUM; DISLOCATIONS; FILMS; MICROSTRUCTURE; RESOLUTION;
D O I
10.1117/12.912097
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High resolution transmission electron microscopy and aberration-corrected scanning transmission electron microscopy (STEM) reveal a new void defect in GaN, Si-doped GaN, and InGaN. The voids are pyramid shaped with symmetric hexagonal {0001} base facets and {10 (1) over bar1} side facets. The pyramid void has a closed or open core dislocation at the peak of the pyramid, which continues up along the [0001] growth direction. The closed dislocations have a 1/3 < 11 (2) over bar0 > edge dislocation Burgers vector component, consistent with known threading dislocations. The open core dislocations are hexagonal shaped with pure screw character, {10 (1) over bar0} side facets, varying lateral widths, and varying degrees of hexagonal symmetry. STEM electron energy loss spectroscopy spectrum imaging revealed a larger C concentration inside the void and below the void than above the void. We propose that carbon deposition during metal organic chemical vapor deposition growth acts as a mask, stopping the GaN deposition locally. Subsequent layers of GaN deposited around the C covered region create the overhanging {10 (1) over bar1} facets, and the meeting of the six {10 (1) over bar1} facets at the pyramid's peak is not perfect, resulting in a dislocation.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Quantification of the Nano-Voids in Electroless Deposited Copper Layers Using SiNx TEM Grids
    Park, So-Yoon
    Cha, Hyun-Woo
    Joung, Jae-Woo
    Yang, Cheol-Woong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (10)
  • [22] Modeling of Internal Transparent Collector IGBTs and the Extraction of Electron Lifetime in Nano-Voids Layer
    Hu, D. Q.
    Wu, Y.
    Kang, B. W.
    Jia, Y. P.
    Sin, Johnny K. O.
    2009 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION, VOLS 1-6, 2009, : 3815 - +
  • [23] Fabrication InGaN nanodisk structure in GaN reverse hexagonal pyramid
    Lin, Chia-Feng
    Dai, Jing-Jie
    Zheng, Jing-Hui
    Yang, Zhong-Jie
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2006, 45 (4 B): : 3818 - 3821
  • [24] Hexagonal-based pyramid void defects in GaN and InGaN
    Yankovich, A. B.
    Kvit, A. V.
    Li, X.
    Zhang, F.
    Avrutin, V.
    Liu, H. Y.
    Izyumskaya, N.
    Ozgur, U.
    Morkoc, H.
    Voyles, P. M.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (02)
  • [25] Fabrication InGaN nanodisk structure in GaN reverse hexagonal pyramid
    Lin, CF
    Dai, JJ
    Zheng, JH
    Yang, ZJ
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (4B): : 3818 - 3821
  • [26] Single Excitons in InGaN Quantum Dots on GaN Pyramid Arrays
    Hsu, Chih-Wei
    Lundskog, Anders
    Karlsson, K. Fredrik
    Forsberg, Urban
    Janzen, Erik
    Holtz, Per Olof
    NANO LETTERS, 2011, 11 (06) : 2415 - 2418
  • [27] The calculation of InGaN quantum dot formation mechanism on GaN pyramid
    Zhou, Shuai
    Liu, Yumin
    Wang, Donglin
    Yu, Zhongyuan
    Zhao, Wei
    Le, Lifeng
    Holtz, Per Olof
    SUPERLATTICES AND MICROSTRUCTURES, 2015, 84 : 72 - 79
  • [28] Blue emission from InGaN/GaN hexagonal pyramid structures
    Miyake, Hideto
    Nakao, Keisuke
    Hiramatsu, Kazumasa
    SUPERLATTICES AND MICROSTRUCTURES, 2007, 41 (5-6) : 341 - 346
  • [29] Hexagonal-based pyramid void defects in GaN and InGaN
    Yankovich, A.B. (ayankovich@wisc.edu), 1600, American Institute of Physics Inc. (111):
  • [30] Ultralow KSiO2 thin films with nano-voids by gas-evaporation technique
    Nozaki, S
    Banerjee, S
    Uchida, K
    Ono, H
    Morisaki, H
    PROCEEDINGS OF THE IEEE 2000 INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE, 2000, : 140 - 142