Magnitude homology of enriched categories and metric spaces

被引:12
|
作者
Leinster, Tom [1 ]
Shulman, Michael [2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh, Midlothian, Scotland
[2] Univ San Diego, Dept Math, San Diego, CA 92110 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2021年 / 21卷 / 05期
关键词
Categorification; Enriched category; Euler characteristic; Hochschild homology; Magnitude; Magnitude homology; Metric space;
D O I
10.2140/agt.2021.21.2175
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Magnitude is a numerical invariant of enriched categories, including in particular metric spaces as [0,infinity)-enriched categories. We show that in many cases magnitude can be categorified to a homology theory for enriched categories, which we call magnitude homology (in fact, it is a special sort of Hochschild homology), whose graded Euler characteristic is the magnitude. Magnitude homology of metric spaces generalizes the Hepworth-Willerton magnitude homology of graphs, and detects geometric information such as convexity.
引用
收藏
页码:2175 / 2221
页数:47
相关论文
共 50 条
  • [1] Probabilistic metric spaces as enriched categories
    Hofmann, Dirk
    Reis, C. D.
    FUZZY SETS AND SYSTEMS, 2013, 210 : 1 - 21
  • [2] Magnitude homology of metric spaces and order complexes
    Kaneta, Ryuki
    Yoshinaga, Masahiko
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 893 - 905
  • [3] Magnitude homology of geodesic metric spaces with an upper curvature bound
    Asao, Yasuhiko
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2021, 21 (02): : 647 - 664
  • [4] THE SYNTACTIC SIDE OF AUTONOMOUS CATEGORIES ENRICHED OVER GENERALISED METRIC SPACES
    Dahlqvist, Fredrik
    Neves, Renato
    LOGICAL METHODS IN COMPUTER SCIENCE, 2023, 19 (04) : 1 - 31
  • [5] COMPLETIONS OF NON-SYMMETRIC METRIC SPACES VIA ENRICHED CATEGORIES
    Schmitt, Vincent
    GEORGIAN MATHEMATICAL JOURNAL, 2009, 16 (01) : 157 - 182
  • [6] THE MAGNITUDE OF METRIC SPACES
    Leinster, Tom
    DOCUMENTA MATHEMATICA, 2013, 18 : 857 - 905
  • [7] MAGNITUDE HOMOLOGY, DIAGONALITY, AND MEDIAN SPACES
    Bottinelli, Remi
    Kaiser, Tom
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2021, 23 (02) : 121 - 140
  • [8] GENERALIZED HOMOLOGY ON COMPACT METRIC SPACES
    KAHN, DS
    KAMINKER, J
    SCHOCHET, C
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A190 - A190
  • [9] Discrete homology theory for metric spaces
    Barcelo, Helene
    Capraro, Valerio
    White, Jacob A.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 889 - 905
  • [10] Approximate injectivity and smallness in metric-enriched categories
    Adamek, J.
    Rosicky, J.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (06)