Magnitude homology of enriched categories and metric spaces

被引:12
|
作者
Leinster, Tom [1 ]
Shulman, Michael [2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh, Midlothian, Scotland
[2] Univ San Diego, Dept Math, San Diego, CA 92110 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2021年 / 21卷 / 05期
关键词
Categorification; Enriched category; Euler characteristic; Hochschild homology; Magnitude; Magnitude homology; Metric space;
D O I
10.2140/agt.2021.21.2175
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Magnitude is a numerical invariant of enriched categories, including in particular metric spaces as [0,infinity)-enriched categories. We show that in many cases magnitude can be categorified to a homology theory for enriched categories, which we call magnitude homology (in fact, it is a special sort of Hochschild homology), whose graded Euler characteristic is the magnitude. Magnitude homology of metric spaces generalizes the Hepworth-Willerton magnitude homology of graphs, and detects geometric information such as convexity.
引用
收藏
页码:2175 / 2221
页数:47
相关论文
共 50 条
  • [31] THE MAGNITUDE HOMOLOGY OF A HYPERGRAPH
    Bi, Wanying
    Li, Jingyan
    Wu, Jie
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2024, 26 (02) : 325 - 348
  • [32] Enriched model categories and presheaf categories
    Guillou, Bertrand J.
    May, J. Peter
    NEW YORK JOURNAL OF MATHEMATICS, 2020, 26 : 37 - 91
  • [33] Vietoris-Rips persistent homology, injective metric spaces, and the filling radius
    Lim, Sunhyuk
    Memoli, Facundo
    Okutan, Osman Berat
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (02): : 1019 - 1100
  • [34] Internal Enriched Categories
    Enrico Ghiorzi
    Applied Categorical Structures, 2022, 30 : 947 - 968
  • [35] ENRICHED INDEXED CATEGORIES
    Shulman, Michael
    THEORY AND APPLICATIONS OF CATEGORIES, 2013, 28 : 616 - 695
  • [36] Grothendieck Enriched Categories
    Imamura, Yuki
    APPLIED CATEGORICAL STRUCTURES, 2022, 30 (05) : 1017 - 1041
  • [37] Grothendieck Enriched Categories
    Yuki Imamura
    Applied Categorical Structures, 2022, 30 : 1017 - 1041
  • [38] Rectification of enriched ∞-categories
    Haugseng, Rune
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (04): : 1931 - 1982
  • [39] Enriched reedy categories
    Angeltveit, Vigleik
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) : 2323 - 2332
  • [40] Enriched accessible categories
    Borceux, F
    Quinteriro, C
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (03) : 489 - 501