Discrete homology theory for metric spaces

被引:18
|
作者
Barcelo, Helene [1 ]
Capraro, Valerio [2 ]
White, Jacob A. [3 ]
机构
[1] Math Sci Res Inst, Berkeley, CA 94720 USA
[2] Univ Southampton, Dept Math, Southampton SO17 1BJ, Hants, England
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
HOMOTOPY-THEORY;
D O I
10.1112/blms/bdu043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study a notion of discrete homology theory for metric spaces. Instead of working with simplicial homology, our chain complexes are given by Lipschitz maps from an n-dimensional cube to a fixed metric space. We prove that the resulting homology theory satisfies a discrete analogue of the Eilenberg-Steenrod axioms, and prove a discrete analogue of the Mayer-Vietoris exact sequence. Moreover, this discrete homology theory is related to the discrete homotopy theory of a metric space through a discrete analogue of the Hurewicz theorem. We study the class of groups that can arise as discrete homology groups and, in this setting, we prove that the fundamental group of a smooth, connected, metrizable, compact manifold is isomorphic to the discrete fundamental group of a 'fine enough' rectangulation of the manifold. Finally, we show that this discrete homology theory can be coarsened, leading to a new non-trivial coarse invariant of a metric space.
引用
收藏
页码:889 / 905
页数:17
相关论文
共 50 条
  • [1] Discrete homotopy theory and critical values of metric spaces
    Conant, Jim
    Curnutte, Victoria
    Jones, Corey
    Plaut, Conrad
    Pueschel, Kristen
    Lusby, Maria
    Wilkins, Jay
    FUNDAMENTA MATHEMATICAE, 2014, 227 (02) : 97 - 128
  • [2] GENERALIZED HOMOLOGY ON COMPACT METRIC SPACES
    KAHN, DS
    KAMINKER, J
    SCHOCHET, C
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A190 - A190
  • [3] Discrete metric spaces - Preface
    Deuber, W
    Deza, M
    Leclerc, B
    DISCRETE MATHEMATICS, 1998, 192 (1-3) : 1 - 1
  • [4] Discrete metric spaces - Preface
    Deuber, W
    EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (2-3) : R1 - R1
  • [5] Discrete metric spaces - Preface
    Deza, M
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (06) : 695 - 695
  • [6] Problems on discrete metric spaces
    Cameron, PJ
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (06) : 831 - 838
  • [7] GENERALIZED HOMOLOGY THEORIES ON COMPACT METRIC SPACES
    KAHN, DS
    KAMINKER, J
    SCHOCHET, C
    MICHIGAN MATHEMATICAL JOURNAL, 1977, 24 (02) : 203 - 224
  • [8] A Primer on Persistent Homology of Finite Metric Spaces
    Memoli, Facundo
    Singhal, Kritika
    BULLETIN OF MATHEMATICAL BIOLOGY, 2019, 81 (07) : 2074 - 2116
  • [9] Magnitude homology of metric spaces and order complexes
    Kaneta, Ryuki
    Yoshinaga, Masahiko
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 893 - 905
  • [10] A Primer on Persistent Homology of Finite Metric Spaces
    Facundo Mémoli
    Kritika Singhal
    Bulletin of Mathematical Biology, 2019, 81 : 2074 - 2116