Empirical likelihood for average derivatives of hazard regression functions

被引:0
|
作者
Lu, Xuewen [1 ]
Sun, Jie
Qi, Yongcheng
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
关键词
average derivative; competing risks data; empirical likelihood; nonparametric hazard regression; single-index model;
D O I
10.1007/s00184-007-0124-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose an empirical likelihood ratio method for the inference about average derivatives in semiparametric hazard regression models for competing risks data. Empirical loglikelihood ratio for the vector of the average derivatives of a hazard regression function is defined and shown to be asymptotically chi-squared with degrees of freedom equal to the dimension of covariate vector. Monte Carlo simulation studies are presented to compare the empirical likelihood ratio method with the normal-approximation-based method.
引用
收藏
页码:93 / 112
页数:20
相关论文
共 50 条