A unified empirical likelihood approach for three Cox-type marginal models dealing with multiple event times, recurrent event times and clustered event times is proposed. The resulting log-empirical likelihood ratio test statistics are shown to possess chi-squared limiting distributions. When making inferences, there is no need to solve estimating equations nor to estimate limiting covariance matrices. The optimal linear combination property for over-identified empirical likelihood is preserved by the proposed method and the property can be used to improve estimation efficiency. In addition, an adjusted empirical likelihood approach is applied to reduce the error rates of the proposed empirical likelihood ratio tests. The adjusted empirical likelihood tests could outperform the existing Wald tests for small to moderate sample sizes. The proposed approach is illustrated by extensive simulation studies and two real examples.
机构:
Department of Statistics, East China Normal University
College of Statistics and Computing Science, Zhejiang Gongshang UniversityDepartment of Statistics, East China Normal University
Wu J.
Zhu L.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Statistics, East China Normal University
Department of Mathematics, Hong Kong Baptist University, Hong KongDepartment of Statistics, East China Normal University
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Qin, GS
Jing, BY
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China