Gauge-independent "Abelian" and magnetic-monopole dominance, and the dual Meissner effect in lattice SU(2) Yang-Mills theory

被引:10
|
作者
Kato, Seikou [1 ]
Kondo, Kei-Ichi [2 ]
Shibata, Akihiro [3 ,4 ]
机构
[1] Fukui Natl Coll Technol, Sabae 9168507, Japan
[2] Chiba Univ, Grad Sch Sci, Dept Phys, Chiba 2638522, Japan
[3] High Energy Accelerator Res Org KEK, Comp Res Ctr, Tsukuba, Ibaraki 3050801, Japan
[4] Grad Univ Adv Studies Sokendai, Tsukuba, Ibaraki 3050801, Japan
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 03期
基金
日本学术振兴会;
关键词
FADDEEV-NIEMI DECOMPOSITION; STRING TENSION; QUARK CONFINEMENT; FORMULATION; VARIABLES; TOPOLOGY;
D O I
10.1103/PhysRevD.91.034506
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the SU(2) Yang-Mills theory on the four-dimensional Euclidean lattice, we confirm the gauge-independent "Abelian" dominance (or the restricted field dominance) and gauge-independent magnetic-monopole dominance in the string tension of the linear potential extracted from the Wilson loop in the fundamental representation. The dual Meissner effect is observed by demonstrating the squeezing of the chromoelectric field flux connecting a pair of a quark and an antiquark. In addition, the circular magnetic-monopole current is induced around the chromoelectric flux. The type of the dual superconductivity is also determined by fitting the result with the dual Ginzburg-Landau model. Thus, the dual superconductor picture for quark confinement is supported in a gauge-independent manner. These results are obtained based on a reformulation of the lattice Yang-Mills theory based on the change of variables a la Cho-Duan-Ge-Faddeev-Niemi combined with a non-Abelian Stokes theorem for the Wilson loop operator. We give a new procedure (called the reduction) for obtaining the color direction field that plays the central role in this reformulation.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Non-Abelian Stokes theorem and quark confinement in SU(N) Yang-Mills gauge theory
    Kondo, KI
    Taira, Y
    PROGRESS OF THEORETICAL PHYSICS, 2000, 104 (06): : 1189 - 1265
  • [32] Coulomb-gauge ghost and gluon propagators in SU(3) lattice Yang-Mills theory
    Nakagawa, Y.
    Voigt, A.
    Ilgenfritz, E. -M.
    Mueller-Preussker, M.
    Nakamura, A.
    Saito, T.
    Sternbeck, A.
    Toki, H.
    PHYSICAL REVIEW D, 2009, 79 (11):
  • [33] Order parameter reconciling Abelian and center dominance in SU(2) Yang-Mills theory -: art. no. 014505
    Fröhlich, J
    Marchetti, PA
    PHYSICAL REVIEW D, 2001, 64 (01)
  • [34] Anatomy of isolated monopole in Abelian projection of SU(2) lattice gauge theory
    V. A. Belavin
    M. I. Polikarpov
    A. I. Veselov
    Journal of Experimental and Theoretical Physics Letters, 2001, 74 : 453 - 455
  • [35] Effective constraint potential for Abelian monopole in SU(2) lattice gauge theory
    Chernodub, M. N.
    Polikarpov, M. I.
    Veselov, A. I.
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 399 (3-4):
  • [36] Double-winding Wilson loops in SU(N) lattice Yang-Mills gauge theory
    Kato, Seikou
    Shibata, Akihiro
    Kondo, Kei-Ichi
    PHYSICAL REVIEW D, 2020, 102 (09)
  • [37] Anatomy of isolated monopole in Abelian projection of SU(2) lattice gauge theory
    Belavin, VA
    Polikarpov, MI
    Veselov, AI
    JETP LETTERS, 2001, 74 (09) : 453 - 455
  • [38] Non-Abelian Stokes theorem and quark confinement in SU(3) Yang-Mills gauge theory
    Kondo, K
    Taira, Y
    MODERN PHYSICS LETTERS A, 2000, 15 (05) : 367 - 377
  • [39] Effective constraint potential for Abelian monopole in SU(2) lattice gauge theory
    Chernodub, MN
    Polikarpov, MI
    Veselov, AI
    PHYSICS LETTERS B, 1997, 399 (3-4) : 267 - 273
  • [40] Exploratory study of the temperature dependence of magnetic vertices in SU(2) Landau gauge Yang-Mills theory
    Fister, Leonard
    Maas, Axel
    PHYSICAL REVIEW D, 2014, 90 (05):