Gauge-independent "Abelian" and magnetic-monopole dominance, and the dual Meissner effect in lattice SU(2) Yang-Mills theory

被引:10
|
作者
Kato, Seikou [1 ]
Kondo, Kei-Ichi [2 ]
Shibata, Akihiro [3 ,4 ]
机构
[1] Fukui Natl Coll Technol, Sabae 9168507, Japan
[2] Chiba Univ, Grad Sch Sci, Dept Phys, Chiba 2638522, Japan
[3] High Energy Accelerator Res Org KEK, Comp Res Ctr, Tsukuba, Ibaraki 3050801, Japan
[4] Grad Univ Adv Studies Sokendai, Tsukuba, Ibaraki 3050801, Japan
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 03期
基金
日本学术振兴会;
关键词
FADDEEV-NIEMI DECOMPOSITION; STRING TENSION; QUARK CONFINEMENT; FORMULATION; VARIABLES; TOPOLOGY;
D O I
10.1103/PhysRevD.91.034506
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the SU(2) Yang-Mills theory on the four-dimensional Euclidean lattice, we confirm the gauge-independent "Abelian" dominance (or the restricted field dominance) and gauge-independent magnetic-monopole dominance in the string tension of the linear potential extracted from the Wilson loop in the fundamental representation. The dual Meissner effect is observed by demonstrating the squeezing of the chromoelectric field flux connecting a pair of a quark and an antiquark. In addition, the circular magnetic-monopole current is induced around the chromoelectric flux. The type of the dual superconductivity is also determined by fitting the result with the dual Ginzburg-Landau model. Thus, the dual superconductor picture for quark confinement is supported in a gauge-independent manner. These results are obtained based on a reformulation of the lattice Yang-Mills theory based on the change of variables a la Cho-Duan-Ge-Faddeev-Niemi combined with a non-Abelian Stokes theorem for the Wilson loop operator. We give a new procedure (called the reduction) for obtaining the color direction field that plays the central role in this reformulation.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Magnetic and thermodynamic stability of SU(2) Yang-Mills theory
    Eletsky, VL
    Kalloniatis, AC
    Lenz, F
    Thies, M
    PHYSICAL REVIEW D, 1998, 57 (08): : 5010 - 5022
  • [22] Abelian dominance and gluon propagators in the maximally Abelian gauge of SU(2) lattice gauge theory
    Bornyakov, VG
    Chernodub, MN
    Gubarev, FV
    Morozov, SM
    Polikarpov, MI
    PHYSICS LETTERS B, 2003, 559 (3-4) : 214 - 222
  • [23] Electric and magnetic fluxes in SU(2) Yang-Mills theory
    von Smekal, L
    de Forcrand, P
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 119 : 655 - 657
  • [24] Magnetic monopoles in pure SU(2) Yang-Mills theory with a gauge-invariant mass
    Nishino, Shogo
    Matsudo, Ryutaro
    Warschinke, Matthias
    Kondo, Kei-Ichi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2018, 2018 (10):
  • [25] RENORMALIZATION AND TOPOLOGICAL SUSCEPTIBILITY ON THE LATTICE - SU(2) YANG-MILLS THEORY
    ALLES, B
    CAMPOSTRINI, M
    DIGIACOMO, A
    GUNDUC, Y
    VICARI, E
    PHYSICAL REVIEW D, 1993, 48 (05): : 2284 - 2289
  • [26] Magnetic monopole clusters, and monopole dominance after smoothing in the maximally Abelian gauge of SU(2)
    Hart, A
    Teper, M
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 522 - 524
  • [27] ON THE MEISSNER EFFECT IN SU(2) LATTICE GAUGE-THEORY
    CEA, P
    COSMAI, L
    NUCLEAR PHYSICS B, 1994, : 219 - 221
  • [28] DUAL MEISSNER EFFECT AND STRING TENSION IN SU(2) LATTICE GAUGE-THEORY
    CEA, P
    COSMAI, L
    PHYSICS LETTERS B, 1995, 349 (03) : 343 - 347
  • [29] Approximate dual representation for Yang–Mills SU(2) gauge theory
    R. Leme
    O. Oliveira
    G. Krein
    The European Physical Journal C, 2018, 78
  • [30] SELF DUAL SOLUTIONS OF THE TEMPERATURE SU(2) YANG-MILLS THEORY
    ACTOR, A
    ANNALS OF PHYSICS, 1983, 148 (01) : 32 - 56