Fate of zero modes in a finite Su-Schrieffer-Heeger model with PT symmetry

被引:36
|
作者
Xu, Zhihao [1 ,2 ,3 ]
Zhang, Rong [1 ,2 ]
Chen, Shu [4 ,5 ,6 ]
Fu, Libin [7 ]
Zhang, Yunbo [1 ,8 ,9 ]
机构
[1] Shanxi Univ, Inst Theoret Phys, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
[3] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[6] Yangtze River Delta Phys Res Ctr, Liyang 213300, Jiangsu, Peoples R China
[7] China Acad Engn Phys, Grad Sch, 10 Xibeiwang East Rd, Beijing 100193, Peoples R China
[8] Zhejiang Sci Tech Univ, Key Lab Opt Field Manipulat Zhejiang Prov, Hangzhou 310018, Peoples R China
[9] Zhejiang Sci Tech Univ, Phys Dept, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
STATES;
D O I
10.1103/PhysRevA.101.013635
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Due to the boundary coupling in a finite system, the zero modes of a standard Su-Schrieffer-Heeger (SSH) model may deviate from exact-zero energy. A recent experiment has shown that by increasing the system size or altering gain or loss strength of the SSH model with parity-time (PT) symmetry, the real parts of the energies of the edge modes can be recovered to exact-zero value [Song et al., phy Rev. Lett. 123, 165701 (2019)]. To clarify the effects of PT-symmetric potentials on the recovery of the nontrivial zero modes, we study the SSH model with PT-symmetric potentials of different forms in both infinite and finite systems. Our results indicate that the energies of the edge modes in the infinite size case decide whether or not the success of the recovery of the zero modes by tuning the strength of PT-symmetric potential in a finite system. If the energies of the edge modes amount to zero in the thermodynamic limit under an open boundary condition (OBC), the recovery of the zero modes will break down by increasing the gain or loss strength for a finite system. Our results can be easily examined in different experimental platforms and inspire more insightful understanding on nontrivial edge modes in topologically non-Hermitian systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Path integral description of a semiclassical Su-Schrieffer-Heeger model
    Zoli, M
    PHYSICAL REVIEW B, 2003, 67 (19):
  • [42] Topological photonic Tamm states and the Su-Schrieffer-Heeger model
    Henriques, J. C. G.
    Rappoport, T. G.
    Bludov, Y., V
    Vasilevskiy, M., I
    Peres, N. M. R.
    PHYSICAL REVIEW A, 2020, 101 (04)
  • [43] Quantum effects on the phonon excitations of the Su-Schrieffer-Heeger model
    Wu, CQ
    Sun, X
    Kawazoe, Y
    SYNTHETIC METALS, 1997, 85 (1-3) : 1165 - 1166
  • [44] Phases and density of states in a generalized Su-Schrieffer-Heeger model
    Voo, KK
    Mou, CY
    PHYSICA B-CONDENSED MATTER, 2004, 344 (1-4) : 224 - 230
  • [46] Adapted Su-Schrieffer-Heeger Hamiltonian for polypyrrole
    Li, Minghai
    Lin, Xi
    PHYSICAL REVIEW B, 2010, 82 (15)
  • [47] Fate of high winding number topological phases in the disordered extended Su-Schrieffer-Heeger model
    Cinnirella, Emmanuele G.
    Nava, Andrea
    Campagnano, Gabriele
    Giuliano, Domenico
    PHYSICAL REVIEW B, 2024, 109 (03)
  • [48] Breaking and resurgence of symmetry in the non-Hermitian Su-Schrieffer-Heeger model in photonic waveguides
    Slootman, E.
    Cherifi, W.
    Eek, L.
    Arouca, R.
    Bergholtz, E. J.
    Bourennane, M.
    Smith, C. Morais
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [49] Two-leg Su-Schrieffer-Heeger chain with glide reflection symmetry
    Zhang, Shao-Liang
    Zhou, Qi
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [50] ASYMPTOTIC CHARACTERIZATION OF LOCALIZED DEFECT MODES: SU-SCHRIEFFER-HEEGER AND RELATED MODELS*
    V. Craster, Richard
    Davies, Bryn
    MULTISCALE MODELING & SIMULATION, 2023, 21 (03): : 827 - 848