Fate of zero modes in a finite Su-Schrieffer-Heeger model with PT symmetry

被引:36
|
作者
Xu, Zhihao [1 ,2 ,3 ]
Zhang, Rong [1 ,2 ]
Chen, Shu [4 ,5 ,6 ]
Fu, Libin [7 ]
Zhang, Yunbo [1 ,8 ,9 ]
机构
[1] Shanxi Univ, Inst Theoret Phys, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
[3] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[6] Yangtze River Delta Phys Res Ctr, Liyang 213300, Jiangsu, Peoples R China
[7] China Acad Engn Phys, Grad Sch, 10 Xibeiwang East Rd, Beijing 100193, Peoples R China
[8] Zhejiang Sci Tech Univ, Key Lab Opt Field Manipulat Zhejiang Prov, Hangzhou 310018, Peoples R China
[9] Zhejiang Sci Tech Univ, Phys Dept, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
STATES;
D O I
10.1103/PhysRevA.101.013635
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Due to the boundary coupling in a finite system, the zero modes of a standard Su-Schrieffer-Heeger (SSH) model may deviate from exact-zero energy. A recent experiment has shown that by increasing the system size or altering gain or loss strength of the SSH model with parity-time (PT) symmetry, the real parts of the energies of the edge modes can be recovered to exact-zero value [Song et al., phy Rev. Lett. 123, 165701 (2019)]. To clarify the effects of PT-symmetric potentials on the recovery of the nontrivial zero modes, we study the SSH model with PT-symmetric potentials of different forms in both infinite and finite systems. Our results indicate that the energies of the edge modes in the infinite size case decide whether or not the success of the recovery of the zero modes by tuning the strength of PT-symmetric potential in a finite system. If the energies of the edge modes amount to zero in the thermodynamic limit under an open boundary condition (OBC), the recovery of the zero modes will break down by increasing the gain or loss strength for a finite system. Our results can be easily examined in different experimental platforms and inspire more insightful understanding on nontrivial edge modes in topologically non-Hermitian systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Two-body physics in the Su-Schrieffer-Heeger model
    Di Liberto, M.
    Recati, A.
    Carusotto, I.
    Menotti, C.
    PHYSICAL REVIEW A, 2016, 94 (06)
  • [32] Competing orders and unconventional criticality in the Su-Schrieffer-Heeger model
    Weber, Manuel
    Toldin, Francesco Parisen
    Hohenadler, Martin
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [33] Topological marker approach to an interacting Su-Schrieffer-Heeger model
    Melo, Pedro B.
    Junior, Sebastiao A. S.
    Chen, Wei
    Mondaini, Rubem
    Paiva, Thereza
    PHYSICAL REVIEW B, 2023, 108 (19)
  • [34] Variational study of the interacting, spinless Su-Schrieffer-Heeger model
    Yahyavi, M.
    Saleem, L.
    Hetenyi, B.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (44)
  • [35] Defect-position-dependent PT-symmetry breaking in coupled Su-Schrieffer-Heeger chains
    Fan, Shuai
    Xing, Yan
    Qi, Lu
    Wang, Hong-Fu
    Zhang, Shou
    LASER PHYSICS LETTERS, 2019, 16 (12)
  • [36] Topology and PT symmetry in a non-Hermitian Su-Schrieffer-Heeger chain with periodic hopping modulation
    Mandal, Surajit
    Kar, Satyaki
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (09)
  • [37] Topological invariants in dissipative extensions of the Su-Schrieffer-Heeger model
    Dangel, Felix
    Wagner, Marcel
    Cartarius, Holger
    Main, Joerg
    Wunner, Gunter
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [38] HUBBARD VERSUS PEIERLS AND THE SU-SCHRIEFFER-HEEGER MODEL OF POLYACETYLENE
    KIVELSON, S
    HEIM, DE
    PHYSICAL REVIEW B, 1982, 26 (08): : 4278 - 4292
  • [39] STATIONARY LATTICE SOLUTIONS OF THE CONTINUOUS SU-SCHRIEFFER-HEEGER MODEL
    PUFF, H
    STREITWOLF, HW
    SYNTHETIC METALS, 1993, 57 (2-3) : 4431 - 4436
  • [40] Bosonic orbital Su-Schrieffer-Heeger model in a lattice of rings
    Nicolau, Eulalia
    Marques, Anselmo M.
    Mompart, Jordi
    Dias, Ricardo G.
    Ahufinger, Veronica
    PHYSICAL REVIEW A, 2023, 108 (02)