Nanoporous BiVO4 nanoflake array photoanode for efficient photoelectrochemical water splitting

被引:14
|
作者
Wang, Jingjing [1 ]
Liu, Canjun [1 ]
Liu, Yang [2 ]
Chen, Shu [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Chem & Chem Engn,Key Lab Theoret Organ Chem &, Hunan Prov Key Lab Adv Mat New Energy Storage & C, Hunan Prov Key Lab Controllable Preparat & Funct, Xiangtan 411201, Hunan, Peoples R China
[2] Cent South Univ, Sch Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
来源
CRYSTENGCOMM | 2020年 / 22卷 / 11期
基金
中国国家自然科学基金;
关键词
HETEROJUNCTION PHOTOANODES; BISMUTH VANADATE; NANOROD ARRAY; THIN-FILMS; OXIDATION; HEMATITE; PHOTOCATHODES; PERFORMANCE; FABRICATION; OXIDE;
D O I
10.1039/d0ce00017e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
BiVO4 has been considered as a promising material for photoelectrochemical (PEC) hydrogen production. To improve the charge transport performance of BiVO4 photoanodes, it is necessary to develop nanostructured BiVO4 array photoanodes. In the present study, an in situ transformation strategy (WO3 -> Bi2WO6 -> BiVO4) was designed and developed to fabricate a nanoporous BiVO4 nanoflake array (NFA) film. As revealed from the characterization results, the BiVO4 nanoflakes were vertically grown on FTO substrates. Note that the nanoflakes were composed of wormlike-shaped particles, thereby forming a nanoporous structure. The as-prepared films as photoanodes exhibited excellent visible-light PEC performance. Under visible light illumination, the photocurrent density of the BiVO4 NFA photoanode without a cocatalyst was 1.0 mA cm(-2) at 1.23 V-RHE, comparable to the reported BiVO4 array photoanode without cocatalysts. In this study, a novel and simple way was proposed to fabricate high-quality BiVO4 array photoanodes.
引用
收藏
页码:1914 / 1921
页数:8
相关论文
共 50 条
  • [31] Efficient suppression of surface charge recombination by CoP-Modified nanoporous BiVO4 for photoelectrochemical water splitting
    Jiang, Daochuan
    Zhang, Lei
    Yue, Qiudi
    Wang, Taotao
    Huang, Qiang
    Du, Pingwu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (29) : 15517 - 15525
  • [32] NdCo3 Molecular Catalyst Coupled with a BiVO4 Photoanode for Photoelectrochemical Water Splitting
    Gao, Guodong
    Chen, Rong
    Wang, Qingjie
    Cheung, Daniel Wun Fung
    Zhao, Jia
    Luo, Jingshan
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (07) : 4027 - 4034
  • [33] Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting
    Wang, Lina
    Wang, Hairu
    Bu, Qian
    Mei, Qiong
    Zhong, Junbo
    Bai, Bo
    Wang, Qizhao
    CHINESE CHEMICAL LETTERS, 2025, 36 (04)
  • [34] Negative effects and mechanisms of phosphorus in electrolyte on the photoelectrochemical water splitting stability of BiVO4 photoanode
    Cao, Xing
    Chen, Huanhui
    Lu, Ziqian
    Zhao, Yubin
    Wei, Shoujing
    Liu, Ya
    Zeng, Junrong
    Zhang, Gaowei
    Ma, Qing
    Zhong, Liubiao
    Song, Lijuan
    Qiu, Yejun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 690
  • [35] Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting
    Kim, Jin Hyun
    Jang, Ji Wook
    Kang, Hyun Joon
    Magesh, Ganesan
    Kim, Jae Young
    Kim, Ju Hun
    Lee, Jinwoo
    Lee, Jae Sung
    JOURNAL OF CATALYSIS, 2014, 317 : 126 - 134
  • [36] Photoelectrochemical Water Splitting Over Decahedron Shaped BiVO4 Photoanode by Tuning the Experimental Parameters
    Pandiaraj, A.
    Ibrahim, M. Mohmed
    Jothivenkatachalam, K.
    Kavinkumar, V.
    JOURNAL OF CLUSTER SCIENCE, 2023, 34 (01) : 557 - 564
  • [37] Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode
    Zhou Z.
    Chen J.
    Wang Q.
    Jiang X.
    Shen Y.
    Chinese Journal of Catalysis, 2022, 43 (02): : 433 - 441
  • [38] Photoelectrochemical Water Splitting Over Decahedron Shaped BiVO4 Photoanode by Tuning the Experimental Parameters
    A. Pandiaraj
    M. Mohmed Ibrahim
    K. Jothivenkatachalam
    V. Kavinkumar
    Journal of Cluster Science, 2023, 34 : 557 - 564
  • [39] Scale-Up of BiVO4 Photoanode for Water Splitting in a Photoelectrochemical Cell: Issues and Challenges
    Yao, Xin
    Wang, Danping
    Zhao, Xin
    Ma, Susu
    Bassi, Prince S.
    Yang, Guang
    Chen, Wei
    Chen, Zhong
    Sritharan, Thirumany
    ENERGY TECHNOLOGY, 2018, 6 (01) : 100 - 109
  • [40] Hierarchical mesoporous SnO2/BiVO4 photoanode decorated with Ag nanorods for efficient photoelectrochemical water splitting
    Tavazohi, Ali
    Abdizadeh, Hossein
    Golobostanfard, Mohammad Reza
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (44) : 18992 - 19004