Nanoporous BiVO4 nanoflake array photoanode for efficient photoelectrochemical water splitting

被引:14
|
作者
Wang, Jingjing [1 ]
Liu, Canjun [1 ]
Liu, Yang [2 ]
Chen, Shu [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Chem & Chem Engn,Key Lab Theoret Organ Chem &, Hunan Prov Key Lab Adv Mat New Energy Storage & C, Hunan Prov Key Lab Controllable Preparat & Funct, Xiangtan 411201, Hunan, Peoples R China
[2] Cent South Univ, Sch Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
来源
CRYSTENGCOMM | 2020年 / 22卷 / 11期
基金
中国国家自然科学基金;
关键词
HETEROJUNCTION PHOTOANODES; BISMUTH VANADATE; NANOROD ARRAY; THIN-FILMS; OXIDATION; HEMATITE; PHOTOCATHODES; PERFORMANCE; FABRICATION; OXIDE;
D O I
10.1039/d0ce00017e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
BiVO4 has been considered as a promising material for photoelectrochemical (PEC) hydrogen production. To improve the charge transport performance of BiVO4 photoanodes, it is necessary to develop nanostructured BiVO4 array photoanodes. In the present study, an in situ transformation strategy (WO3 -> Bi2WO6 -> BiVO4) was designed and developed to fabricate a nanoporous BiVO4 nanoflake array (NFA) film. As revealed from the characterization results, the BiVO4 nanoflakes were vertically grown on FTO substrates. Note that the nanoflakes were composed of wormlike-shaped particles, thereby forming a nanoporous structure. The as-prepared films as photoanodes exhibited excellent visible-light PEC performance. Under visible light illumination, the photocurrent density of the BiVO4 NFA photoanode without a cocatalyst was 1.0 mA cm(-2) at 1.23 V-RHE, comparable to the reported BiVO4 array photoanode without cocatalysts. In this study, a novel and simple way was proposed to fabricate high-quality BiVO4 array photoanodes.
引用
收藏
页码:1914 / 1921
页数:8
相关论文
共 50 条
  • [21] Recent advances in elaborate interface regulation of BiVO4 photoanode for photoelectrochemical water splitting
    Wang, Liming
    Zhang, Yaping
    Li, Weibing
    Wang, Lei
    MATERIALS REPORTS: ENERGY, 2023, 3 (04):
  • [22] Enhanced performance of NiF2/BiVO4 photoanode for photoelectrochemical water splitting
    Ziwei Zhao
    Kaiyi Chen
    Jingwei Huang
    Lei Wang
    Houde She
    Qizhao Wang
    Frontiers in Energy, 2021, 15 : 760 - 771
  • [23] Transparent Co3FeOx Film Passivated BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting
    方明
    秦琪
    蔡倩
    刘伟
    ChineseJournalofStructuralChemistry, 2021, 40 (11) : 1505 - 1512
  • [24] Preparation of a BiVO4 nanoporous photoanode based on peroxovanadate reduction and conversion for efficient photoelectrochemical performance
    Xia, Ligang
    Li, Jinhua
    Bai, Jing
    Li, Linsen
    Zeng, Qingyi
    Xu, Qunjie
    Zhou, Baoxue
    NANOSCALE, 2018, 10 (06) : 2848 - 2855
  • [25] Transparent Co3FeOx Film Passivated BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting
    Fang Ming
    Qin Qi
    Cai Qian
    Liu Wei
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2021, 40 (11) : 1505 - 1512
  • [26] Graphene oxide as a hole extraction layer loaded on BiVO4 photoanode for highly efficient photoelectrochemical water splitting
    Guo, Min-Li
    Wan, Shi-Peng
    Li, Cao-Long
    Zhang, Kan
    RARE METALS, 2022, 41 (11) : 3795 - 3802
  • [27] Graphene oxide as a hole extraction layer loaded on BiVO4 photoanode for highly efficient photoelectrochemical water splitting
    Min-Li Guo
    Shi-Peng Wan
    Cao-Long Li
    Kan Zhang
    RareMetals, 2022, 41 (11) : 3795 - 3802
  • [28] Graphene oxide as a hole extraction layer loaded on BiVO4 photoanode for highly efficient photoelectrochemical water splitting
    Min-Li Guo
    Shi-Peng Wan
    Cao-Long Li
    Kan Zhang
    Rare Metals, 2022, 41 : 3795 - 3802
  • [29] A novel BiVO4/DLC heterojunction for efficient photoelectrochemical water splitting
    Yuan, Hewei
    Zhang, Yaozhong
    Su, Yanjie
    Hu, Nantao
    Yang, Jianhua
    Zeng, Min
    Yang, Zhi
    Zhang, Yafei
    CHEMICAL ENGINEERING JOURNAL, 2023, 459
  • [30] Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode
    Zhou, Zhiming
    Chen, Jinjin
    Wang, Qinlong
    Jiang, Xingxing
    Shen, Yan
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (02) : 433 - 441