HAR ENHANCED WEAKLY-SUPERVISED SEMANTIC SEGMENTATION COUPLED WITH ADVERSARIAL LEARNING

被引:0
|
作者
Ma, Leiyuan [1 ]
Liu, Ziyi [1 ]
Zheng, Nanning [1 ]
Wang, Jianji [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
semantic segmentation; weakly-supervised; adversarial learning; atrous rate;
D O I
10.1109/icip.2019.8803111
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Semantic segmentation is a challenging computer visual task which needs enormous pixel-level annotation data. But collecting a large amount of pixel-level annotation data is labor intensive. To address this issue, our work focuses on weakly-supervised learning approach which combines the adversarial learning and localization ability of classification model together, in this way, data with different annotations can be fully utilized. Specifically, the adversarial learning encourages the high order spatial consistences thus offers a relatively reliable initial confidence map. And we find that the hybrid atrous rate (HAR) can improve the localization ability of the classification model, thus indicate more precise object-related regions, which serves as strong supervision information. We conduct experiments with different settings to demonstrate the effectiveness of this weakly-supervised learning approach. The results show that our approach can improve the performance of baseline adversarial learning from 73.2 to 75.1 (mIOU), which is pretty effective.
引用
收藏
页码:1845 / 1849
页数:5
相关论文
共 50 条
  • [41] Weakly-supervised semantic segmentation with saliency and incremental supervision updating
    Luo, Wenfeng
    Yang, Meng
    Zheng, Weishi
    PATTERN RECOGNITION, 2021, 115
  • [42] Class agnostic and specific consistency learning for weakly-supervised point cloud semantic segmentation
    Wu, Junwei
    Sun, Mingjie
    Xu, Haotian
    Jiang, Chenru
    Ma, Wuwei
    Zhang, Quan
    PATTERN RECOGNITION, 2025, 158
  • [43] WeClick: Weakly-Supervised Video Semantic Segmentation with Click Annotations
    Liu, Peidong
    He, Zibin
    Yan, Xiyu
    Jiang, Yong
    Xia, Shu-Tao
    Zheng, Feng
    Hu, Maowei
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2995 - 3004
  • [44] Weakly-supervised Semantic Segmentation in Cityscape via Hyperspectral Image
    Huang, Yuxing
    Shen, Qiu
    Fu, Ying
    You, Shaodi
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1117 - 1126
  • [45] Global Consistency Enhancement Network for Weakly-Supervised Semantic Segmentation
    Jiang, Le
    Yang, Xinhao
    Ma, Liyan
    Li, Zhenglin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 53 - 65
  • [46] IMAGE AUGMENTATION WITH CONTROLLED DIFFUSION FOR WEAKLY-SUPERVISED SEMANTIC SEGMENTATION
    Wu, Wangyu
    Dai, Tianhong
    Huang, Xiaowei
    Ma, Fei
    Xiao, Jimin
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6175 - 6179
  • [47] Pseudo-mask Matters in Weakly-supervised Semantic Segmentation
    Li, Yi
    Kuang, Zhanghui
    Liu, Liyang
    Chen, Yimin
    Zhang, Wayne
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6944 - 6953
  • [48] Weakly-Supervised Semantic Segmentation via Self-training
    Cheng, Hao
    Gu, Chaochen
    Wu, Kaijie
    2020 4TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND ARTIFICIAL INTELLIGENCE (CCEAI 2020), 2020, 1487
  • [49] Deep graph cut network for weakly-supervised semantic segmentation
    Feng, Jiapei
    Wang, Xinggang
    Liu, Wenyu
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (03)
  • [50] Deep graph cut network for weakly-supervised semantic segmentation
    Jiapei FENG
    Xinggang WANG
    Wenyu LIU
    ScienceChina(InformationSciences), 2021, 64 (03) : 57 - 68