HAR ENHANCED WEAKLY-SUPERVISED SEMANTIC SEGMENTATION COUPLED WITH ADVERSARIAL LEARNING

被引:0
|
作者
Ma, Leiyuan [1 ]
Liu, Ziyi [1 ]
Zheng, Nanning [1 ]
Wang, Jianji [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
semantic segmentation; weakly-supervised; adversarial learning; atrous rate;
D O I
10.1109/icip.2019.8803111
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Semantic segmentation is a challenging computer visual task which needs enormous pixel-level annotation data. But collecting a large amount of pixel-level annotation data is labor intensive. To address this issue, our work focuses on weakly-supervised learning approach which combines the adversarial learning and localization ability of classification model together, in this way, data with different annotations can be fully utilized. Specifically, the adversarial learning encourages the high order spatial consistences thus offers a relatively reliable initial confidence map. And we find that the hybrid atrous rate (HAR) can improve the localization ability of the classification model, thus indicate more precise object-related regions, which serves as strong supervision information. We conduct experiments with different settings to demonstrate the effectiveness of this weakly-supervised learning approach. The results show that our approach can improve the performance of baseline adversarial learning from 73.2 to 75.1 (mIOU), which is pretty effective.
引用
收藏
页码:1845 / 1849
页数:5
相关论文
共 50 条
  • [21] Discriminative region suppression for weakly-supervised semantic segmentation
    Korea Advanced Institute of Science and Technology , Korea, Republic of
    arXiv, 1600,
  • [22] Expansion and Shrinkage of Localization for Weakly-Supervised Semantic Segmentation
    Li, Jinlong
    Jie, Zequn
    Wang, Xu
    Wei, Xiaolin
    Ma, Lin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [23] Weakly-Supervised Semantic Segmentation Using Motion Cues
    Tokmakov, Pavel
    Alahari, Karteek
    Schmid, Cordelia
    COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 388 - 404
  • [24] HYPERGRAPH CONVOLUTIONAL NETWORKS FOR WEAKLY-SUPERVISED SEMANTIC SEGMENTATION
    Giraldo, Jhony H.
    Scarrica, Vincenzo
    Staiano, Antonino
    Camastra, Francesco
    Bouwmans, Thierry
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 16 - 20
  • [25] Weakly-Supervised Semantic Segmentation Network With Iterative dCRF
    Li, Yujie
    Sun, Jiaxing
    Li, Yun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 25419 - 25426
  • [26] Weakly Supervised Semantic Segmentation via Adversarial Learning of Classifier and Reconstructor
    Kweon, Hyeokjun
    Yoon, Sung-Hoon
    Yoon, Kuk-Jin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11329 - 11339
  • [27] Modeling the Background for Incremental and Weakly-Supervised Semantic Segmentation
    Cermelli, Fabio
    Mancini, Massimiliano
    Bulo, Samuel Rota
    Ricci, Elisa
    Caputo, Barbara
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10099 - 10113
  • [28] Weakly-Supervised Semantic Segmentation Based on Improved CAM
    Yan, Xingya
    Gao, Ying
    Wang, Gaihua
    Lecture Notes on Data Engineering and Communications Technologies, 2022, 89 : 584 - 594
  • [29] WeakCLIP: Adapting CLIP for Weakly-Supervised Semantic Segmentation
    Zhu, Lianghui
    Wang, Xinggang
    Feng, Jiapei
    Cheng, Tianheng
    Li, Yingyue
    Jiang, Bo
    Zhang, Dingwen
    Han, Junwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (03) : 1085 - 1105
  • [30] Learning from the Web: Language Drives Weakly-Supervised Incremental Learning for Semantic Segmentation
    Liu, Chang
    Rizzoli, Giulia
    Zanuttigh, Pietro
    Li, Fu
    Niu, Yi
    COMPUTER VISION - ECCV 2024, PT XVII, 2025, 15075 : 352 - 369