Computing eigenvalues and eigenfunctions of the Laplacian for convex polygons

被引:9
|
作者
Colbrook, Matthew J. [1 ]
Fokas, Athanasisos S. [1 ,2 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA 90089 USA
基金
英国工程与自然科学研究理事会;
关键词
Elliptic PDEs; Eigenvalues and eigenfunctions; Boundary value problems; Spectral convergence; Unified transform method; DIRICHLET-NEUMANN MAP; LINEAR ELLIPTIC PDES; NUMERICAL IMPLEMENTATION; TRANSFORM METHOD; PLANE DOMAINS; APPROXIMATION; SINGULARITIES; EQUATIONS; CORNER;
D O I
10.1016/j.apnum.2017.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently a new transform method, called the Unified Transform or the Fokas method, for solving boundary value problems (BVPs) for linear and integrable nonlinear partial differential equations (PDEs) has received a lot of attention. For linear elliptic PDEs, this method yields two equations, known as the global relations, coupling the Dirichlet and Neumann boundary values. These equations can be used in a collocation method to determine the Dirichlet to Neumann map. This involves expanding the unknown functions in terms of a suitable basis, and choosing a set of collocation points at which to evaluate the global relations. Here, using these methods for the Helmholtz and modified Helmholtz equations and following the earlier results of [15], we determine eigenvalues of the Laplacian in a convex polygon. Eigenvalues are characterised by the points where the generalised Dirichlet to Neumann map becomes singular. We find that the method yields spectral convergence for eigenfunctions smooth on the boundary and for non-smooth boundary values, the rate of convergence is determined by the rate of convergence of expansions in the chosen Legendre basis. Extensions to the case of oblique derivative boundary conditions and constant coefficient elliptic PDEs are also discussed and demonstrated. (C) 2017 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [31] PROBABILITY POLYGONS IN CONVEX POLYGONS
    BUCHTA, C
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1984, 347 : 212 - 220
  • [32] DISSECTIONS OF POLYGONS INTO CONVEX POLYGONS
    Zak, Andrzej
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2010, 20 (02) : 223 - 244
  • [33] Approximation of convex polygons by polygons
    Koutschan, Christoph
    Ponomarchuk, Anton
    Schicho, Josef
    2021 23RD INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2021), 2021, : 91 - 98
  • [34] DIRECT METHODS FOR COMPUTING EIGENVALUES OF FINITE-DIFFERENCE LAPLACIAN
    KUTTLER, JR
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (04) : 732 - 740
  • [35] COMPUTING THE RECIPROCAL DISTANCE SIGNLESS LAPLACIAN EIGENVALUES AND ENERGY OF GRAPHS
    Alhevaz, A.
    Baghipur, M.
    Ramane, H. S.
    MATEMATICHE, 2019, 74 (01): : 49 - 73
  • [36] Neumann Eigenfunctions and Eigenvalues
    Burdzy, Krzysztof
    BROWNIAN MOTION AND ITS APPLICATIONS TO MATHEMATICAL ANALYSIS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLIII - 2013, 2014, 2106 : 31 - 39
  • [37] An Observation on Eigenfunctions of the Laplacian
    Agnid Banerjee
    Nicola Garofalo
    La Matematica, 2024, 3 (4): : 1451 - 1455
  • [38] ERGODICITY AND LAPLACIAN EIGENFUNCTIONS
    DEVERDIERE, YC
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 102 (03) : 497 - 502
  • [39] The Eigenvalues and Laplacian Eigenvalues of A Graph
    Wang, Haitang
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 337 - 341
  • [40] Circumferences, Eigenvalues, and Laplacian Eigenvalues
    Li, Rao
    UTILITAS MATHEMATICA, 2016, 100 : 89 - 95