Computing eigenvalues and eigenfunctions of the Laplacian for convex polygons

被引:9
|
作者
Colbrook, Matthew J. [1 ]
Fokas, Athanasisos S. [1 ,2 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA 90089 USA
基金
英国工程与自然科学研究理事会;
关键词
Elliptic PDEs; Eigenvalues and eigenfunctions; Boundary value problems; Spectral convergence; Unified transform method; DIRICHLET-NEUMANN MAP; LINEAR ELLIPTIC PDES; NUMERICAL IMPLEMENTATION; TRANSFORM METHOD; PLANE DOMAINS; APPROXIMATION; SINGULARITIES; EQUATIONS; CORNER;
D O I
10.1016/j.apnum.2017.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently a new transform method, called the Unified Transform or the Fokas method, for solving boundary value problems (BVPs) for linear and integrable nonlinear partial differential equations (PDEs) has received a lot of attention. For linear elliptic PDEs, this method yields two equations, known as the global relations, coupling the Dirichlet and Neumann boundary values. These equations can be used in a collocation method to determine the Dirichlet to Neumann map. This involves expanding the unknown functions in terms of a suitable basis, and choosing a set of collocation points at which to evaluate the global relations. Here, using these methods for the Helmholtz and modified Helmholtz equations and following the earlier results of [15], we determine eigenvalues of the Laplacian in a convex polygon. Eigenvalues are characterised by the points where the generalised Dirichlet to Neumann map becomes singular. We find that the method yields spectral convergence for eigenfunctions smooth on the boundary and for non-smooth boundary values, the rate of convergence is determined by the rate of convergence of expansions in the chosen Legendre basis. Extensions to the case of oblique derivative boundary conditions and constant coefficient elliptic PDEs are also discussed and demonstrated. (C) 2017 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] COMPUTING THE EXTREME DISTANCES BETWEEN 2 CONVEX POLYGONS
    EDELSBRUNNER, H
    JOURNAL OF ALGORITHMS, 1985, 6 (02) : 213 - 224
  • [22] Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin planar domains
    Borisov, Denis
    Freitas, Pedro
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02): : 547 - 560
  • [23] Computing Convex-Straight-Skeleton Voronoi Diagrams for Segments and Convex Polygons
    Barequet, Gill
    De, Minati
    Goodrich, Michael T.
    COMPUTING AND COMBINATORICS (COCOON 2018), 2018, 10976 : 130 - 142
  • [24] Computing Eigenvalues and Eigenfunctions of Schrodinger Equations Using a Model Reduction Approach
    Li, Shuangping
    Zhang, Zhiwen
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (04) : 1073 - 1100
  • [25] On some unexpected properties of radial and symmetric eigenvalues and eigenfunctions of the p-Laplacian on a disk
    Bobkov, Vladimir
    Drabek, Pavel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (03) : 1755 - 1772
  • [26] Computing the maximum overlap of two convex polygons under translations
    de Berg, M
    Devillers, O
    van Kreveld, M
    Schwarzkopf, O
    Teillaud, M
    ALGORITHMS AND COMPUTATION, 1996, 1178 : 126 - 135
  • [27] Computing the Maximum Overlap of Two Convex Polygons under Translations
    M. de Berg
    O. Cheong
    O. Devillers
    M. van Kreveld
    M. Teillaud
    Theory of Computing Systems, 1998, 31 : 613 - 628
  • [28] Computing the maximum overlap of two convex polygons under translations
    de Berg, M
    Cheong, O
    Devillers, O
    van Kreveld, M
    Teillaud, M
    THEORY OF COMPUTING SYSTEMS, 1998, 31 (05) : 613 - 628
  • [29] A universal inequality for Neumann eigenvalues of the Laplacian on a convex domain in Euclidean space
    Funano, Kei
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (01): : 222 - 226
  • [30] Computing the sum of k largest Laplacian eigenvalues of tricyclic graphs
    Kumar, Pawan
    Merajuddin, S.
    Pirzada, Shariefuddin
    DISCRETE MATHEMATICS LETTERS, 2023, 11 : 14 - 18