Spanning trees of recursive scale-free graphs

被引:1
|
作者
Diggans, C. Tyler [1 ,2 ,3 ]
Bollt, Erik M. [1 ,4 ]
ben-Avraham, Daniel [1 ,2 ]
机构
[1] Clarkson Univ, Clarkson Ctr Complex Syst Sci, Potsdam, NY 13699 USA
[2] Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA
[3] Air Force Res Lab, Informat Directorate, Rome, NY 13441 USA
[4] Clarkson Univ, Dept Elect & Comp Engn, Potsdam, NY 13699 USA
关键词
MINIMUM NUMBER; MODELS;
D O I
10.1103/PhysRevE.105.024312
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a link-by-link rule-based method for constructing all members of the ensemble of spanning trees for any recursively generated, finitely articulated graph, such as the Dorogovtsev-Goltsev-Mendes (DGM) net. The recursions allow for many large-scale properties of the ensemble of spanning trees to be analytically solved exactly. We show how a judicious application of the prescribed growth rules selects for certain subsets of the spanning trees with particular desired properties (small world, extended diameter, degree distribution, etc.), and thus approximates and/or provides solutions to several optimization problems on undirected and unweighted networks. The analysis of spanning trees enhances the usefulness of recursive graphs as sophisticated models for everyday life complex networks.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Underlying scale-free trees in complex networks
    Kim, DH
    Son, SW
    Ahn, YY
    Kim, PJ
    Eom, YH
    Jeong, H
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2005, (157): : 213 - 220
  • [32] The statistical geometry of scale-free random trees
    Donetti, L
    Destri, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (23): : 6003 - 6025
  • [33] Distribution of edge load in scale-free trees
    Fekete, A
    Vattay, G
    Kocarev, L
    PHYSICAL REVIEW E, 2006, 73 (04)
  • [34] Deterministic scale-free networks created in a recursive manner
    Zhang, Zhongzhi
    Rong, Lili
    2006 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1-4: VOL 1: SIGNAL PROCESSING, 2006, : 2683 - 2686
  • [35] Synchronous and asynchronous recursive random scale-free nets
    Comellas, F
    Rozenfeld, HD
    ben-Avraham, D
    PHYSICAL REVIEW E, 2005, 72 (04):
  • [36] Quantum quenches and thermalization on scale-free graphs
    Caravelli, Francesco
    JOURNAL OF THEORETICAL AND APPLIED PHYSICS, 2014, 8 (04) : 225 - 230
  • [37] Maximal cliques in scale-free random graphs
    Blaesius, Thomas
    Katzmann, Maximillian
    Stegehuis, Clara
    NETWORK SCIENCE, 2024,
  • [38] On The Collapse Of Graphs Related to Scale-Free Networks
    Yao, Bing
    Wang, Hongyu
    Yao, Ming
    Chen, Xiang'en
    Yang, Chao
    Zhang, Xiaomin
    2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 738 - 743
  • [39] Asymptotics for Cliques in Scale-Free Random Graphs
    Alastair Haig
    Fraser Daly
    Seva Shneer
    Journal of Statistical Physics, 2022, 189
  • [40] Statistical ensemble of scale-free random graphs
    Burda, Z
    Correia, JD
    Krzywicki, A
    PHYSICAL REVIEW E, 2001, 64 (04):