Quasi-interpolation in isogeometric analysis based on generalized B-splines

被引:48
|
作者
Costantini, Paolo [1 ]
Manni, Carla [2 ]
Pelosi, Francesca [2 ]
Sampoli, M. Lucia [1 ]
机构
[1] Univ Siena, Dipartimento Sci Matemat & Informat, I-53100 Siena, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00173 Rome, Italy
关键词
Quasi-interpolation; Isogeometric analysis; Generalized B-splines;
D O I
10.1016/j.cagd.2010.07.004
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Isogeometric analysis is a new method for the numerical simulation of problems governed by partial differential equations. It possesses many features in common with finite element methods (FEM) but takes some inspiration from Computer Aided Design tools. We illustrate how quasi-interpolation methods can be suitably used to set Dirichlet boundary conditions in isogeometric analysis. In particular, we focus on quasi-interpolant projectors for generalized B-splines, which have been recently proposed as a possible alternative to NURBS in isogeometric analysis. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:656 / 668
页数:13
相关论文
共 50 条
  • [41] Scattered data interpolation with multilevel B-splines
    Lee, S
    Wolberg, G
    Shin, SY
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1997, 3 (03) : 228 - 244
  • [42] A technique for the construction of generalized B-splines
    Conti, C
    Rebut, C
    MATHEMATICAL METHODS FOR CURVES AND SURFACES II, 1998, : 63 - 70
  • [43] Efficient extraction of hierarchical B-Splines for local refinement and coarsening of Isogeometric Analysis
    D'Angella, Davide
    Reali, Alessandro
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 367 (367)
  • [44] Isogeometric Analysis with Hierarchical B-Splines for Planar Structural Dynamics with Large Deformation
    Rong J.-L.
    Xiong L.-Y.
    Liu C.
    Xin P.-F.
    Liu Z.-C.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2020, 40 (06): : 592 - 601
  • [45] CONSTRUCTION OF GENERALIZED B-SPLINES AND THEIR PROPERTIES
    KVASOV, BI
    DOKLADY AKADEMII NAUK, 1995, 341 (06) : 744 - 748
  • [46] Three recipes for quasi-interpolation with cubic Powell-Sabin splines
    Groselj, Jan
    Speleers, Hendrik
    COMPUTER AIDED GEOMETRIC DESIGN, 2018, 67 : 47 - 70
  • [47] LR B-Splines implementation in the Altair Radioss™ solver for explicit dynamics IsoGeometric Analysis
    Occelli, M.
    Elguedj, T.
    Bouabdallahh, S.
    Morancay, L.
    ADVANCES IN ENGINEERING SOFTWARE, 2019, 131 : 166 - 185
  • [48] High order interpolation and differentiation using B-splines
    Chaniotis, AK
    Poulikakos, D
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 197 (01) : 253 - 274
  • [49] On complete interpolation spline finding via B-splines
    Volkov, Y. S.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2008, 5 : 334 - 338
  • [50] B-SPLINES, INTERPOLATION AND DIGITAL SIGNAL-PROCESSING
    FERRARI, LA
    GEOPHYSICS, 1987, 52 (11) : 1583 - 1583