Quasi-interpolation in isogeometric analysis based on generalized B-splines

被引:48
|
作者
Costantini, Paolo [1 ]
Manni, Carla [2 ]
Pelosi, Francesca [2 ]
Sampoli, M. Lucia [1 ]
机构
[1] Univ Siena, Dipartimento Sci Matemat & Informat, I-53100 Siena, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00173 Rome, Italy
关键词
Quasi-interpolation; Isogeometric analysis; Generalized B-splines;
D O I
10.1016/j.cagd.2010.07.004
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Isogeometric analysis is a new method for the numerical simulation of problems governed by partial differential equations. It possesses many features in common with finite element methods (FEM) but takes some inspiration from Computer Aided Design tools. We illustrate how quasi-interpolation methods can be suitably used to set Dirichlet boundary conditions in isogeometric analysis. In particular, we focus on quasi-interpolant projectors for generalized B-splines, which have been recently proposed as a possible alternative to NURBS in isogeometric analysis. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:656 / 668
页数:13
相关论文
共 50 条
  • [21] On Hermite interpolation with B-splines
    Seidel, Hans-Peter
    Computer Aided Geometric Design, 1991, 8 (06) : 439 - 441
  • [22] Kernel B-splines and interpolation
    M. Bozzini
    L. Lenarduzzi
    R. Schaback
    Numerical Algorithms, 2006, 41 : 1 - 16
  • [23] A NATURAL FORMULATION OF QUASI-INTERPOLATION BY MULTIVARIATE SPLINES
    CHUI, CK
    DIAMOND, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (04) : 643 - 646
  • [24] Interpolation with nonuniform B-splines
    Margolis, E
    Eldar, YC
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 577 - 580
  • [25] Natural interpolation by B-splines
    Kalitkin, NN
    Shlyakhov, NM
    DOKLADY MATHEMATICS, 2000, 62 (02) : 194 - 198
  • [26] Shape-preserving MQ-B-Splines quasi-interpolation
    Zhang, WX
    Wu, ZM
    GEOMETRIC MODELING AND PROCESSING 2004, PROCEEDINGS, 2004, : 85 - 92
  • [27] EXTRAPOLATING B-SPLINES FOR INTERPOLATION
    MONAGHAN, JJ
    JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) : 253 - 262
  • [28] Cubic generalized B-splines for interpolation and nonlinear filtering of images
    Tshughuryan, H
    NONLINEAR IMAGE PROCESSING VIII, 1997, 3026 : 233 - 240
  • [29] Kernel B-splines and interpolation
    Bozzini, M
    Lenarduzzi, L
    Schaback, R
    NUMERICAL ALGORITHMS, 2006, 41 (01) : 1 - 16
  • [30] Eigenvalue Isogeometric Approximations Based on B-Splines: Tools and Results
    Ekstrom, Sven-Erik
    Serra-Capizzano, Stefano
    ADVANCED METHODS FOR GEOMETRIC MODELING AND NUMERICAL SIMULATION, 2019, 35 : 57 - 76