LOCAL CONVERGENCE FOR SOME THIRD-ORDER ITERATIVE METHODS UNDER WEAK CONDITIONS

被引:22
|
作者
Argyros, Ioannis K. [1 ]
Cho, Yeol Je [2 ,3 ,4 ]
George, Santhosh [5 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Gyeongsang Natl Univ, Dept Math Educ, Jinju 660701, South Korea
[3] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[5] NIT Karnataka, Dept Math & Computat Sci, Mangaluru 575025, Karnataka, India
基金
新加坡国家研究基金会;
关键词
Newton method; order of convergence; local convergence; NEWTONS METHOD; SEMILOCAL CONVERGENCE; RECURRENCE RELATIONS; R-ORDER; VARIANT;
D O I
10.4134/JKMS.j150244
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solutions of equations are usually found using iterative methods whose convergence order is determined by Taylor expansions. In particular, the local convergence of the method we study in this paper is shown under hypotheses reaching the third derivative of the operator involved. These hypotheses limit the applicability of the method. In our study we show convergence of the method using only the first derivative. This way we expand the applicability of the method. Numerical examples show the applicability of our results in cases earlier results cannot.
引用
收藏
页码:781 / 793
页数:13
相关论文
共 50 条
  • [1] A note on some new iterative methods with third-order convergence
    Wu, Qingbiao
    Ren, Hongmin
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (02) : 1790 - 1793
  • [2] Third-order iterative methods under Kantorovich conditions
    Amat, S.
    Busquier, S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (01) : 243 - 261
  • [3] Local Convergence of a Family of Iterative Methods with Sixth and Seventh Order Convergence Under Weak Conditions
    Liu, Tianbao
    Qin, Xiwen
    Wang, Peng
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2019, 16 (08)
  • [4] On the local convergence of a third-order iterative scheme in Banach spaces
    Sharma, Debasis
    Parhi, Sanjaya Kumar
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 311 - 325
  • [5] On the local convergence of a third-order iterative scheme in Banach spaces
    Debasis Sharma
    Sanjaya Kumar Parhi
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 311 - 325
  • [6] A class of iterative methods with third-order convergence to solve nonlinear equations
    Kocak, M. Cetin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 290 - 306
  • [7] On some third-order iterative methods for solving nonlinear equations
    Mamta
    Kanwar, V
    Kukreja, VK
    Singh, S
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (01) : 272 - 280
  • [8] An accelerated iterative method with third-order convergence
    Hu, Zhongyong
    Fang, Liang
    Li, Lianzhong
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 2658 - 2661
  • [9] Some third-order families of iterative methods for solving nonlinear equations
    Chun, Changbum
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) : 924 - 933
  • [10] On global convergence for an efficient third-order iterative process
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Magrenan, A. A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404