Full automation of total metabolic tumor volume from FDG-PET/CT in DLBCL for baseline risk assessments

被引:17
|
作者
Jemaa, S. [1 ]
Paulson, J. N. [2 ]
Hutchings, M. [3 ]
Kostakoglu, L. [4 ]
Trotman, J. [5 ]
Tracy, S. [2 ]
de Crespigny, A. [6 ]
Carano, R. A. D. [1 ]
El-Galaly, T. C. [7 ]
Nielsen, T. G. [8 ]
Bengtsson, T. [1 ,9 ]
机构
[1] Genentech Inc, 1PHC Imaging, San Francisco, CA 94080 USA
[2] Genentech Inc, Biostat, San Francisco, CA 94080 USA
[3] Rigshosp, Dept Haematol, Copenhagen, Denmark
[4] Univ Virginia, Dept Radiol & Med Imaging, Charlottesville, VA USA
[5] Univ Sydney, Concord Repatriat Gen Hosp, Dept Haematol, Concord, NSW, Australia
[6] Genentech Inc, Clin Imaging Grp, San Francisco, CA 94080 USA
[7] Aalborg Univ Hosp, Dept Hematol, Aalborg, Denmark
[8] F Hoffmann La Roche Ltd, Pharmaceut Dev Clin Oncol, Bldg 1,Grenzarcherstr 124m, CH-4070 Basel, Switzerland
[9] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
DLBCL; FDG-PET; Imaging; Al; B-CELL LYMPHOMA; BONE-MARROW BIOPSY; PROGNOSTIC STRATIFICATION; NCCN-IPI; R-IPI; INVOLVEMENT; PREDICTION; PROVIDES;
D O I
10.1186/s40644-022-00476-0
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Current radiological assessments of (18)fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging data in diffuse large B-cell lymphoma (DLBCL) can be time consuming, do not yield real-time information regarding disease burden and organ involvement, and hinder the use of FDG-PET to potentially limit the reliance on invasive procedures (e.g. bone marrow biopsy) for risk assessment. Methods: Our aim is to enable real-time assessment of imaging-based risk factors at a large scale and we propose a fully automatic artificial intelligence (AI)-based tool to rapidly extract FDG-PET imaging metrics in DLBCL. On availability of a scan, in combination with clinical data, our approach generates clinically informative risk scores with minimal resource requirements. Overall, 1268 patients with previously untreated DLBCL from the phase III GOYA trial (NCT01287741) were included in the analysis (training: n = 846; hold-out: n = 422). Results: Our AI-based model comprising imaging and clinical variables yielded a tangible prognostic improvement compared to clinical models without imaging metrics. We observed a risk increase for progression-free survival (PFS) with hazard ratios [HR] of 1.87 (95% CI: 1.31-2.67) vs 1.38 (95% CI: 0.98-1.96) (C-index: 0.59 vs 0.55), and a risk increase for overall survival (OS) (HR: 2.16 (95% CI: 1.37-3.40) vs 1.40 (95% CI: 0.90-2.17); C-index: 0.59 vs 0.55). The combined model defined a high-risk population with 35% and 42% increased odds of a 4-year PFS and OS event, respectively, versus the International Prognostic Index components alone. The method also identified a subpopulation with a 2-year Central Nervous System (CNS)-relapse probability of 17.1%. Conclusion: Our tool enables an enhanced risk stratification compared with IPI, and the results indicate that imaging can be used to improve the prediction of central nervous system relapse in DLBCL. These findings support integration of clinically informative Al-generated imaging metrics into clinical workflows to improve identification of high-risk DLBCL patients.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Stratification of Hodgkin lymphoma patients using metabolic tumor burden and tumor dissemination calculated from baseline [18F]FDG-PET/CT imaging
    Girum, Kibrom
    Cottereau, Anne-Segolene
    Haberl, David
    Papp, Laszlo
    Rebaud, Louis
    Hacker, Marcus
    Beyer, Thomas
    Haug, Alexander
    Carrio, Ignasi
    Buvat, Irene
    JOURNAL OF NUCLEAR MEDICINE, 2022, 63
  • [22] Pretherapeutic FDG-PET total metabolic tumor volume predicts response to induction therapy in pediatric Hodgkin’s lymphoma
    Julian M. M. Rogasch
    Patrick Hundsdoerfer
    Frank Hofheinz
    Florian Wedel
    Imke Schatka
    Holger Amthauer
    Christian Furth
    BMC Cancer, 18
  • [23] FDG-PET metabolic tumor volume imaging for radiation therapy in pancreatic cancer.
    Jang, S
    Kassaee, A
    Whittington, R
    Robenstock, A
    Alavi, A
    JOURNAL OF NUCLEAR MEDICINE, 2003, 44 (05) : 23P - 23P
  • [24] Early Reassessment of Total Metabolic Tumor Volume on FDG-PET/CT in Advanced Melanoma Patients Treated with Pembrolizumab Predicts Long-Term Outcome
    Vermeulen, Sim
    Awada, Gil
    Keyaerts, Marleen
    Neyns, Bart
    Everaert, Hendrik
    CURRENT ONCOLOGY, 2021, 28 (03) : 1630 - 1640
  • [25] FDG-PET metabolic tumor volume imaging for radiation therapy in lung cancer.
    Jang, S
    Machtay, M
    Kassaee, A
    Robenstock, A
    Alavi, A
    JOURNAL OF NUCLEAR MEDICINE, 2003, 44 (05) : 409P - 409P
  • [26] Baseline Metabolic Tumor Volume Measured by FDG PET/CT Before Neoadjuvant Chemotherapy Predicts Survival in Pediatric Osteosarcoma
    Im, Hyung-Jun
    Wu, Huiyun
    Yi, Zhang
    Wu, Jianrong
    Shulkin, Barry
    Cho, Steve
    JOURNAL OF NUCLEAR MEDICINE, 2016, 57
  • [27] Multicenter variability of total metabolic tumor volume estimates in FDG PET.
    Buvat, Irene
    Nioche, Christophe
    Dupont, Axel
    Thureau, Sebastien
    Modzelewski, Romain
    Gouel, Pierrick
    Giraud, Philippe
    Vera, Pierre
    Hapdey, Sebastien
    JOURNAL OF NUCLEAR MEDICINE, 2017, 58
  • [28] Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in primary gastric DLBCL
    Albano, D.
    Dondi, F.
    Mazzoletti, A.
    Bellini, P.
    Gregorelli, M.
    Calabro, A.
    Camoni, L.
    Bertagna, F.
    Giubbini, R.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S355 - S355
  • [29] FORECAST VALUE OF BASAL METABOLIC PARAMETERS: TOTAL TUMOR METABOLIC VOLUME (VMTT) AND GLYCOLYSIS RATE (TG) MEASURED IN (18F) FDG-PET/CT (PET) IN HODGKIN'S LYMPHOMA
    Gamez, Jimenez Elena Maria
    Lamarca, Eraso Laura
    Rashki, Mahsa
    Trivino, Ibanez Eva M.
    Ramos, Font Carlos
    Exposito, Ruiz Manuela
    Hernandez, Mohedo Francisca
    Jurado, Chacon Manuel
    HAEMATOLOGICA, 2020, 105 : 90 - 90
  • [30] Estimation of esophageal tumor length by FDG-PET with surgical pathology confirmation: relationship to metabolic tumor volume
    Mamede, M.
    Abreu-e-Lima, P.
    Gandler, W.
    Nose, V.
    Gerbaudo, V. H.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2006, 33 : S165 - S165