Full automation of total metabolic tumor volume from FDG-PET/CT in DLBCL for baseline risk assessments

被引:17
|
作者
Jemaa, S. [1 ]
Paulson, J. N. [2 ]
Hutchings, M. [3 ]
Kostakoglu, L. [4 ]
Trotman, J. [5 ]
Tracy, S. [2 ]
de Crespigny, A. [6 ]
Carano, R. A. D. [1 ]
El-Galaly, T. C. [7 ]
Nielsen, T. G. [8 ]
Bengtsson, T. [1 ,9 ]
机构
[1] Genentech Inc, 1PHC Imaging, San Francisco, CA 94080 USA
[2] Genentech Inc, Biostat, San Francisco, CA 94080 USA
[3] Rigshosp, Dept Haematol, Copenhagen, Denmark
[4] Univ Virginia, Dept Radiol & Med Imaging, Charlottesville, VA USA
[5] Univ Sydney, Concord Repatriat Gen Hosp, Dept Haematol, Concord, NSW, Australia
[6] Genentech Inc, Clin Imaging Grp, San Francisco, CA 94080 USA
[7] Aalborg Univ Hosp, Dept Hematol, Aalborg, Denmark
[8] F Hoffmann La Roche Ltd, Pharmaceut Dev Clin Oncol, Bldg 1,Grenzarcherstr 124m, CH-4070 Basel, Switzerland
[9] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
DLBCL; FDG-PET; Imaging; Al; B-CELL LYMPHOMA; BONE-MARROW BIOPSY; PROGNOSTIC STRATIFICATION; NCCN-IPI; R-IPI; INVOLVEMENT; PREDICTION; PROVIDES;
D O I
10.1186/s40644-022-00476-0
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Current radiological assessments of (18)fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging data in diffuse large B-cell lymphoma (DLBCL) can be time consuming, do not yield real-time information regarding disease burden and organ involvement, and hinder the use of FDG-PET to potentially limit the reliance on invasive procedures (e.g. bone marrow biopsy) for risk assessment. Methods: Our aim is to enable real-time assessment of imaging-based risk factors at a large scale and we propose a fully automatic artificial intelligence (AI)-based tool to rapidly extract FDG-PET imaging metrics in DLBCL. On availability of a scan, in combination with clinical data, our approach generates clinically informative risk scores with minimal resource requirements. Overall, 1268 patients with previously untreated DLBCL from the phase III GOYA trial (NCT01287741) were included in the analysis (training: n = 846; hold-out: n = 422). Results: Our AI-based model comprising imaging and clinical variables yielded a tangible prognostic improvement compared to clinical models without imaging metrics. We observed a risk increase for progression-free survival (PFS) with hazard ratios [HR] of 1.87 (95% CI: 1.31-2.67) vs 1.38 (95% CI: 0.98-1.96) (C-index: 0.59 vs 0.55), and a risk increase for overall survival (OS) (HR: 2.16 (95% CI: 1.37-3.40) vs 1.40 (95% CI: 0.90-2.17); C-index: 0.59 vs 0.55). The combined model defined a high-risk population with 35% and 42% increased odds of a 4-year PFS and OS event, respectively, versus the International Prognostic Index components alone. The method also identified a subpopulation with a 2-year Central Nervous System (CNS)-relapse probability of 17.1%. Conclusion: Our tool enables an enhanced risk stratification compared with IPI, and the results indicate that imaging can be used to improve the prediction of central nervous system relapse in DLBCL. These findings support integration of clinically informative Al-generated imaging metrics into clinical workflows to improve identification of high-risk DLBCL patients.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Full automation of total metabolic tumor volume from FDG-PET/CT in DLBCL for baseline risk assessments
    S. Jemaa
    J. N. Paulson
    M. Hutchings
    L. Kostakoglu
    J. Trotman
    S. Tracy
    A. de Crespigny
    R. A. D. Carano
    T. C. El-Galaly
    T. G. Nielsen
    T. Bengtsson
    Cancer Imaging, 22
  • [2] Role of Metabolic Tumor Volume and Total Lesion Glycolysis on FDG-PET/CT in NSCLC treated with SBRT
    Cabrera, J.
    Infante, J.
    Cruz, C.
    Moreno, M.
    Gonzalez, M.
    Rayo, J.
    Simon, P.
    Ortiz, B.
    Munoz, J.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S754 - S755
  • [3] International benchmark for total metabolic tumor volume assessment in baseline FDG PET/CT of lymphoma patients.
    Boellaard, Ronald
    Buvat, Irene
    Ceriani, Luca
    Cottereau, Anne-Segolene
    Guerra, Luca
    Hicks, Rodney
    Kanoun, Salim
    Kobe, Carsten
    Loft, Annika
    Schoder, Heiko
    Versari, Annibale
    Voltin, Conrad-Amadeus
    Zwezerijnen, Gerben
    Meignan, Michel
    Barrington, Sally
    JOURNAL OF NUCLEAR MEDICINE, 2023, 64
  • [4] Molecular Profile and FDG-PET Metabolic Volume at Staging in DLBCL-Response
    Cottereau, Anne-Segolene
    Lanic, Helene
    Mareschal, Sylvain
    Meignan, Michel
    Vera, Pierre
    Tilly, Herve
    Jardin, Fabrice
    Becker, Stephanie
    CLINICAL CANCER RESEARCH, 2016, 22 (13) : 3414 - 3415
  • [5] Molecular Profile and FDG-PET Metabolic Volume at Staging in DLBCL-Letter
    Adams, Hugo J. A.
    Kwee, Thomas C.
    CLINICAL CANCER RESEARCH, 2016, 22 (13) : 3413 - 3413
  • [6] FDG-PET/CT Metabolic Tumor Volume: A New Prognostic Marker in Hodgkin Lymphoma?
    Boulesteix, Marine
    Touati, Mohamed
    Abraham, Julie
    Verbeke, Sandrine
    El Badaoui, Assmae
    Gourin, Marie Pierre
    Olivrie, Agnes
    Corre, Manuela Delage
    Marin, Benoit
    Jaccard, Arnaud
    Bordessoule, Dominique
    Monteil, Jacques
    BLOOD, 2012, 120 (21)
  • [7] Prognostic value of metabolic tumor volume measured by FDG-PET/CT in patients with cervical cancer
    Chung, Hyun Hoon
    Kim, Jae Weon
    Han, Kyung Hee
    Eo, Jae Seon
    Kang, Keon Wook
    Park, Noh-Hyun
    Song, Yong-Sang
    Chung, June-Key
    Kang, Soon-Beom
    GYNECOLOGIC ONCOLOGY, 2011, 120 (02) : 270 - 274
  • [8] Prognostic value of metabolic tumor volume measured by FDG-PET/CT in patients with cervical cancer
    Chung, H.
    Eo, J.
    Han, K.
    Kang, S.
    Kang, K.
    Kim, J.
    Park, N.
    Song, Y.
    GYNECOLOGIC ONCOLOGY, 2011, 121 (01) : S113 - S113
  • [9] Prediction of Total Metabolic Tumor Volume from Tissue-Wise FDG-PET/CT Projections, Interpreted Using Cohort Saliency Analysis
    Tarai, Sambit
    Lundstrom, Elfin
    Ofverstedt, Johan
    Jonsson, Hanna
    Ahmad, Nouman
    Ahlstrom, Hakan
    Kullberg, Joel
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, PT II, MIUA 2024, 2024, 14860 : 242 - 255
  • [10] Baseline Total Metabolic Tumor Volume is Prognostic for Refractoriness to Immunochemotherapy in DLBCL: Results From GOYA
    Ruiz, Irene Canales
    Martelli, Maurizio
    Sehn, Laurie H.
    Vitolo, Umberto
    Nielsen, Tina G.
    Sellam, Gila
    Bottos, Alessia
    Klingbiel, Dirk
    Kostakoglu, Lale
    CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2022, 22 (08): : E804 - E814