Global F-splitting ratio of modules

被引:1
|
作者
De Stefani, Alessandro [1 ]
Polstra, Thomas [2 ]
Yao, Yongwei [3 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
[2] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[3] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
基金
美国国家科学基金会;
关键词
Prime characteristic; F -splitting ratio; F; -signature; Globalizing; FROBENIUS; SIGNATURE;
D O I
10.1016/j.jalgebra.2022.07.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Techniques are developed to extend the notions of F-splitting ratios to modules over rings of prime characteristic, which are not assumed to be local. We first develop the local theory for F-splitting ratio of modules over local rings, and then extend it to the global setting. We also prove that strong F-regularity of a pair (R,D), where Dis a Cartier algebra, is equivalent to the positivity of the global F-signature s(R, D) of the pair. This extends a result previously proved by these authors, by removing an extra assumption on the Cartier algebra.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:773 / 792
页数:20
相关论文
共 50 条
  • [31] SPLITTING - WELDON,F
    PEARL, N
    LIBRARY JOURNAL, 1995, 120 (07) : 117 - 118
  • [32] 'SPLITTING' - WELDON,F
    HARRIS, B
    NEW YORK TIMES BOOK REVIEW, 1995, : 48 - 48
  • [33] On the choice of the splitting ratio for the split likelihood ratio test
    Strieder, David
    Drton, Mathias
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 6631 - 6650
  • [34] Damper modules with adapted stiffness ratio
    R. Sonnenburg
    A. Stretz
    Archive of Applied Mechanics, 2011, 81 : 853 - 862
  • [35] Damper modules with adapted stiffness ratio
    Sonnenburg, R.
    Stretz, A.
    ARCHIVE OF APPLIED MECHANICS, 2011, 81 (07) : 853 - 862
  • [36] GLOBAL MODEL STRUCTURES FOR *-MODULES
    Boehme, Benjamin
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2019, 21 (02) : 213 - 230
  • [37] THEORY OF DIMENSIONS IN GLOBAL MODULES
    LANGMANN, K
    MATHEMATISCHE ZEITSCHRIFT, 1976, 146 (01) : 33 - 52
  • [38] Computing global extension modules
    Smith, GG
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (4-5) : 729 - 746
  • [39] CONSTRUCTIONS OF GLOBAL MODULES AND APPLICATIONS
    LANGMANN, K
    MATHEMATISCHE ZEITSCHRIFT, 1972, 127 (03) : 235 - &
  • [40] F-ing Modules
    Rossberg, Andreas
    Russo, Claudio V.
    Dreyer, Derek
    TLDI '10: PROCEEDINGS OF THE 2010 ACM SIGPLAN WORKSHOP ON TYPES IN LANGUAGE DESIGN AND IMPLEMENTATION, 2010, : 89 - 101