Global F-splitting ratio of modules

被引:1
|
作者
De Stefani, Alessandro [1 ]
Polstra, Thomas [2 ]
Yao, Yongwei [3 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
[2] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[3] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
基金
美国国家科学基金会;
关键词
Prime characteristic; F -splitting ratio; F; -signature; Globalizing; FROBENIUS; SIGNATURE;
D O I
10.1016/j.jalgebra.2022.07.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Techniques are developed to extend the notions of F-splitting ratios to modules over rings of prime characteristic, which are not assumed to be local. We first develop the local theory for F-splitting ratio of modules over local rings, and then extend it to the global setting. We also prove that strong F-regularity of a pair (R,D), where Dis a Cartier algebra, is equivalent to the positivity of the global F-signature s(R, D) of the pair. This extends a result previously proved by these authors, by removing an extra assumption on the Cartier algebra.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:773 / 792
页数:20
相关论文
共 50 条